Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Valentine
Xem chi tiết
Phạm Thị Thùy Linh
20 tháng 8 2019 lúc 20:52

\(đkxđ\Leftrightarrow x\ge\sqrt{x^2-4x+4}\)\(\Rightarrow x\ge|x-2|\Rightarrow x\ge0\)

\(A=\sqrt{x-\sqrt{x^2-4x+4}}.\)

\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)

\(=\sqrt{x-|x-2|}=0\)

Nếu \(x\ge2\Rightarrow A=\sqrt{x-\left(x-2\right)}=\sqrt{x-x+2}=\sqrt{2}\)

Nếu \(0\le x< 2\Rightarrow A=\sqrt{x-\left(2-x\right)}=\sqrt{2x-2}\)

See you again
Xem chi tiết
Nyatmax
24 tháng 8 2019 lúc 12:17

a.\(DKXD:x\ge1\)

b.\(A=\sqrt{x-\sqrt{x^2-4x+4}}=\sqrt{x-\sqrt{\left(x-2\right)^2}}=\sqrt{x-|x-2|}=\orbr{\begin{cases}\sqrt{2}\left(x\ge2\right)\\2x-2\left(1\le x< 2\right)\end{cases}}\)

Lê Thanh Ngọc
Xem chi tiết
Phạm Tiến	Dũng
Xem chi tiết
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:41

Bài 1 : Với : \(x>0;x\ne1\)

\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)

Thay vào ta được : \(P=x=25\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:43

Bài 2 : 

a, Với \(x\ge0;x\ne1\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)

\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
10 tháng 8 2021 lúc 16:45

Bài 3 : \(x\ge0;x\ne1\)

\(P=\left(\frac{3}{x-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\)

\(=\left(\frac{2+\sqrt{x}}{x-1}\right).\left(\sqrt{x}+1\right)=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

b, Ta có : \(P=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{5}{4}\Rightarrow4\sqrt{x}+8=5\sqrt{x}-5\)

\(\Leftrightarrow\sqrt{x}=13\Leftrightarrow x=169\)(tmđk )

Khách vãng lai đã xóa
ngan kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 12:37

Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

Hà Quang Minh
5 tháng 8 2023 lúc 12:38

Điều kiện: x>2, \(x\ne4\)

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right):\dfrac{2\sqrt{x}}{x-4}\\ \Rightarrow A=\sqrt{x}\cdot\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}}\cdot\dfrac{x-4}{2\sqrt{x}}\\ \Rightarrow A=\dfrac{\left(x-4\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)}{2\sqrt{x^2-4}}\)

Park Chanyeol
Xem chi tiết
Hoàng Lê Bảo Ngọc
14 tháng 7 2016 lúc 0:41

a) ĐKXĐ : \(0\le x\ne4\) 

b) \(A=\left(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{\sqrt{x}}{2-\sqrt{x}}+\frac{4\sqrt{x}-1}{x-4}\right):\frac{1}{x-4}\)  

\(=\left[\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\left(x-4\right)\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

\(=\frac{-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=-1\)

Nguyen Nhu Nam
13 tháng 7 2016 lúc 23:46

\(A=\left[\frac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4\sqrt{x}-1}{x-4}\right]:\frac{1}{x-4}\)

\(=\frac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{x-4}.\left(x-4\right)\)=\(=\frac{-1}{x-4}.\left(x-4\right)=-1\)

Vậy giá trị của A thỏa mãn mọi x và rút gọn lại còn -1

nguyenyennhi
Xem chi tiết
Đinh Phi Yến
29 tháng 11 2021 lúc 22:46

undefinedundefinedundefined

Oriana.su
Xem chi tiết
Nguyễn Huy Tú
11 tháng 7 2021 lúc 9:33

a, \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)ĐK : \(x\ge0;x\ne4\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b, Ta có :

 \(P=2\Rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Rightarrow3\sqrt{x}=2\sqrt{x}+4\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)( tmđk )

Vậy P = 2 thì x = 16 

Dưa Hấu
11 tháng 7 2021 lúc 9:34

undefined

Trúc Giang
11 tháng 7 2021 lúc 9:36

a) x ≥ 0; x ≠ 4

\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b) P = 2

\(\Rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Rightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Rightarrow-\sqrt{x}+4=0\)

\(\Rightarrow\sqrt{x}=4\)

=> x = 16

Trần Anh Tuấn
Xem chi tiết