cho x,y,z thỏa mãn xyz=1. cm: 1/ xy+x+1 +1/ yz+y+1 +1/ xyz+yz+y =1
Cho x, y, z, thỏa mãn xyz=1 .Chứng minh rằng :\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=1\)
ta có :
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz}{1+yz+y}\)
\(\frac{yz+y+xyz}{y+1+yz}\)
\(\frac{yz+y+1}{yz+y+1}\)
=1
luffy123 làm đúng mà sao vẫn có đứa bảo sai kìa
cho x,y,z thỏa mãn x.y.z=1 C/m : 1/xy+x+1+y/yz+y+1+1/xyz+yz+y=1
Cho \(x,y,z\) thỏa mãn \(xyz=1\)
CMR \(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{zx+z+1}=1\)
Cho x,y,z thỏa mãn x.y.z=1
Chứng minh: \(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=1\)
Ta có:
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{xyz}{x.\left(y+1+yz\right)}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{yz}{y+1+yz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)
Cho x, y, x thỏa mãn xyz = 1
Chứng minh rằng : \(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=1\)
Cho x, y, z thỏa mãn xyz = 1
CMR : \(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}=1\)
\(\dfrac{1}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{xyz+yz+y}\)
\(=\dfrac{xyz}{xy+x+xyz}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz}{yz+y+1}+\dfrac{y}{yz+y+1}+\dfrac{1}{yz+y+1}\)
\(=\dfrac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)
Vậy...
Cho 3 số dương x,y,z thỏa mãn: xyz=1 . Tính giá trị biểu thức :
\(M=\frac{x+2xy+1}{x+xy+xz+z}+\frac{y+2yz+1}{y+yz+xy+1}+\frac{z+2xz+1}{z+xz+yz+1}\)
Ta có \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}\)
Tương tự => \(M=\frac{1+2y+yz}{\left(y+1\right)\left(z+1\right)}+\frac{1+2z+zx}{\left(1+x\right)\left(z+1\right)}+\frac{1+2x+xy}{\left(1+x\right)\left(y+1\right)}\)
=> \(M=\frac{\left(1+2y+yz\right)\left(1+x\right)+\left(1+2z+zx\right)\left(1+y\right)+\left(1+2x+xy\right)\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
=>\(M=\frac{6+3\left(x+y+z\right)+3\left(xy+yz+xz\right)}{2+\left(x+y+z\right)+\left(xy+yz+xz\right)}=3\)
Cho x; y; z thỏa mãn : x.y.z =1
Chứng minh :\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
thay x.y.z zô biểu thức đi . rùi đặt nhân tử chung rùi tự làm , đến đó mà k làm dc nữa thì die đi
cho 3 số thực dương x,y,z thỏa mãn xyz=1 cmr xy/(x^3+y^3+xy0+yz/(y^3+z^3+yz)+xz/(x^3+z^3+xz)<=1