cho phương trình x^2-2x+m-2. Tìm giá trị m để pt có 2 nghiệm x1,x2 thoả mãn 3(x1²+x2²)+x1²x2²=11
Bài 1 cho pt x^2-2(m+1)x+4m+m^2=0 .Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 sao cho biểu thức A =|x1-x2| đạt giá trị nhỏ nhất
bài 2 cho pt x^2+mx+2m-4=0.Tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+|x2|=3
bài 3 cho pt x^2-3x-m^2+1=0.tìm m để phương trình có 2 nghiệm phân biệt x1,x2 thỏa mãn |x1|+2|x2|=3
Cho phương trình x^2-2(m-1)x+m+1=0.Tìm để pt co 2 nghiệm x1, x2 thoả mãn x1/x2+x2/x1=4.
Ptr có `2` nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2-(m+1) >= 0`
`<=>m^2-2m+1-m-1 >= 0`
`<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`
Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`
`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`
`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`
`<=>[(2m-2)^2-2(m+1)]/[m+1]=4` `(m ne -1)`
`=>4m^2-8m+4-2m-2=4m-4`
`<=>4m^2-14m+8=0`
`<=>m=[7+-\sqrt{17}]/4` (ko t/m)
`=>` Ko có giá trị `m` t/m
cho pt x2-2(m-1)x-2m+5=0với m là tham số tìm các giá trị của m để pt đã cho có 2 nghiệm phân biệt x1,x2(x1<x2) thoả mãn x1-x2=-2
Δ=(2m-2)^2-4(-2m+5)
=4m^2-8m+4+8m-20=4m^2-16
Để PT có hai nghiệm phân biệt thì 4m^2-16>0
=>m>2 hoặc m<-2
x1-x2=-2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(2m-2)^2-4(-2m+5)=4
=>4m^2-8m+4+8m-20=4
=>4m^2=20
=>m^2=5
=>m=căn 5 hoặc m=-căn 5
Cho pt: x2 - 5x + m = 0 (m là tham số)
Tìm m để phương trình trên có 2 nghiệm x1, x2 thoả mãn: |x1 - x2| = 3
\(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
\(\left|x_1-x_2\right|=3\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
\(\Leftrightarrow25-4m=9\Rightarrow m=4\) (thỏa mãn)
Pt có 2 nghiệm
\(\to \Delta=(-5)^2-4.1.m=25-4m\ge 0\\\leftrightarrow 4m\le 25\\\leftrightarrow m\le\dfrac{25}{4}\)
Theo Viét
\(\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}\)
\(|x_1-x_2|=3\\\leftrightarrow \sqrt{(x_1-x_2)^2}=3\\\leftrightarrow \sqrt{x_1^2+x_2^2-2x_1x_2}=3\\\leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}=3\\\leftrightarrow \sqrt{5^2-4m}=3\\\leftrightarrow 25-4m=9\\\leftrightarrow 4m=16\\\leftrightarrow m=4(TM)\)
Vậy \(m=4\) thỏa mãn hệ thức
1. cho phương trình x^2-2(m-3)x-2m-10=0 tìm giá trị nhỏ nhất của biểu thức A = x1^2 +x2^2-x1x2
2. cho phương trình x^2-(2m-1)x +m^2-m =0 . tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thoả mãn |x1 -2x| bé hơn hoặc bằng 5
3. cho phương trình x^2 - (2m-1)x -2m -11 =0 . tìm m để phương trình có 2 nghiệm phân biệt x1 ;x2 thoả mãn |x1 -x2| bé hơn hoặc bằng 4
4.hai ca nô cùng rời bến A đến bến B .ca nô thứ nhất mỗi giờ chạy nhanh hơn ca nô thứ hai 5km nên đến B sớm hơn ca nô thứ hai 30 phút .tính vận tốc mỗi ca nô biết quãng đường AB dài 75 km
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
Cho phương trình x2 - 6x + m = 0.
1) Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu.
2) Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn điều kiện x1 - x2 = 4
1: Để phương trình có hai nghiệm trái dấu thì m<0
2: Để phương trình có hai nghiệm thì Δ>=0
=>36-4m>=0
=>m<=9
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1-x_2=4\\x_1+x_2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=1\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=m\)
=>m=5(nhận)
Cho phương trình: x2-(m-1)x-m-2=0. Tìm tất cả các giá trị của m để pt có 2 nghiệm phân biệt x1, x2 thỏa mãn x2+x1-x2=4-m
Cho phương trình bậc hai: x²-7x+m=0 a) Giải phương trình, m = 1 b) Tìm giá trị m để phương trình (1) có 2 nghiệm x1 và x2 thoả mãn: x1²+x2²=29
a, Thay \(m=1\) vào \(\left(1\right)\)
\(\Rightarrow x^2-7x+1=0\\ \Delta=\left(-7\right)^2-4.1.1=45\\ \Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7+3\sqrt{5}}{2}\\x_2=\dfrac{7-3\sqrt{5}}{2}\end{matrix}\right.\)
b, \(\Delta=\left(-7\right)^2-4.m=49-4m\)
phương trình cs nghiệm \(49-4m\ge0\\ \Rightarrow m\le\dfrac{49}{4}\)
Áp dụng hệ thức vi ét
\(\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=m\end{matrix}\right.\)
\(x^2_1+x^2_2=29\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\\ \Leftrightarrow7^2-2.m-29=0\\ \Leftrightarrow20-2m=0\\ \Rightarrow m=10\left(t/m\right)\)
Vậy \(m=10\)
cho phương trình x^2 - x + 1 +m = 0 tìm các giá trị của m để phương trình trên có hai nghiệm x1, x2 thỏa mãn x1*x2*(x1*x2 - 2) = 3*(x1 + x2)
Theo hệ thức Vi-ét ta có:
x1+x2=\(-\frac{-1}{1}=1\)
x1x2=\(\frac{1+m}{1}=1+m\)
=> x1x2(x1x2-2)=3(x1+x2)
<=> (1+m)(1+m-2)=3
<=> m2-1=3
<=>m2=4
<=> m=-2 hoặc m =2 (loại)
Vậy m = -2