x1x2^ 2 -x1 ( 5m+3x1x2) =10115
Giải giúp mik với để mik thay viet
Áp dụng cái gì ra vậy mí bạn? x1² +x2² - x1x2 = (x1 + x2)2 - 3x1x2
x12 +x22= (x12 + 2x1x2 + x22) - 2x1x2 (*vì cộng 2x1x2 rồi nên -2x1x2 để cân bằng tỉ số)
Ở đây ta thấy biểu thức trong ngoặc là hẳng đẳng thức => (x1 +x2)2 - 2x1x2 - x1x2 = (x1 +x2)2 - 3x1x2
tìm m để pt \(x^2-2\left(m+1\right)x+5m+1=0\)
có nghiệm x1;x2 sao cho
a,S=x1^2+x2^2-x1x2 đạt gtnn
b, 1<x1<x2
\(\Delta'=\left(m+1\right)^2-\left(5m+1\right)=m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=5m+1\end{matrix}\right.\)
a.
\(S=\left(x_1+x_2\right)^2-3x_1x_2=4\left(m+1\right)^2-3\left(5m+1\right)\)
\(=4m^2-7m+1=\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2+1\ge1\)
\(S_{min}=1\) khi \(\dfrac{7}{3}\left(m^2-3m\right)+\dfrac{5}{3}m^2=0\Rightarrow m=0\)
b.
\(1< x_1< x_2\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)>0\\\dfrac{x_1+x_2}{2}>1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_2\right)+1>0\\x_1+x_2>2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5m+1-2\left(m+1\right)+1>0\\2\left(m+1\right)>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>0\\m>-1\end{matrix}\right.\) \(\Rightarrow m>0\)
Kết hợp điều kiện delta \(\Rightarrow m\ge3\)
\(a,\Leftrightarrow\Delta\ge0\Leftrightarrow\left(2m+2\right)^2-4\left(5m+1\right)\ge0\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le0\\m\ge3\end{matrix}\right.\)
\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1x2=5m+1\end{matrix}\right.\)
\(\Rightarrow S=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)
\(=\left(2m+2\right)^2-3\left(5m+1\right)=4m^2-7m+1\)
\(=\left(2m\right)^2-2.2.\dfrac{7}{4}.m+\left(\dfrac{7}{4}\right)^2-\dfrac{33}{16}=\left(2m-\dfrac{7}{4}\right)^2-\dfrac{33}{16}\left(1\right)\)
\(TH1:m\ge3\Rightarrow\left(1\right)\ge\left(2.3-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=16\)
\(TH2:m\le0\Rightarrow\left(1\right)\ge\left(0-\dfrac{7}{4}\right)^2-\dfrac{33}{16}=1\)
\(\Rightarrow MinS=1\Leftrightarrow m=0\left(tm\right)\)
\(b,1< x1< x2\Leftrightarrow0< x1-1< x2-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-1\right)\left(x2-1\right)>0\\x1+x2-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\\\left\{{}\begin{matrix}x1 < 1\\x2< 1\end{matrix}\right.\end{matrix}\right.\\2m+2-2>0\\\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}x1x2>1\\x1x2< 1\end{matrix}\right.\\m>0\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>3\\m< 0\end{matrix}\right.\\\left[{}\begin{matrix}m>0\\m< 0\end{matrix}\right.\\m>0\\\end{matrix}\right.\Rightarrow m>3\)
Cho phương trình: \(^{x^2-4x+5m-2=0}\)( với m là tham số)
Tính giá trị của m để phương trình trên có ngiệm x1, x2 thỏa mãn x1^2x2+x1x2^2=12
( x một mũ hai nhân x hai +x1 nhân x2 mũ hai nha)
Tại mk lười dùng delta nên bn làm delta cũng tương tự vậy nha!
Ta có: x2 - 4x + 5m - 2 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 5m - 6 = 0
\(\Leftrightarrow\) (x - 2)2 = 6 - 5m
\(\Leftrightarrow\) x - 2 = \(\pm\)\(\sqrt{6-5m}\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x_1=\sqrt{6-5m}+2\\x_2=-\sqrt{6-5m}+2\end{matrix}\right.\)
Ta có: x12 . x2 + x1 . x22 = 12
\(\Leftrightarrow\) (\(\sqrt{6-5m}+2\))2. \(\left(-\sqrt{6-5m}+2\right)\) + \(\left(\sqrt{6-5m}+2\right)\) \(\left(-\sqrt{6-5m}+2\right)^2\) = 12
\(\Leftrightarrow\) (4 - 6 + 5m)(\(\sqrt{6-5m}+2-\sqrt{6-5m}+2\)) = 12
\(\Leftrightarrow\) (-2 + 5m).4 = 12
\(\Leftrightarrow\) -2 + 5m = 3
\(\Leftrightarrow\) m = 1
Vậy ...
Chúc bn học tốt!
cho phương trình x2 - 2(m -1)x - 2m - 1 = 0 (m là tham số)
tìm các giá trị của m để phương trình có 2 nghiệm x1x2 thỏa mãn 2x1 + 3x2 + 3x1x2 = -11
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m-1$
Khi đó:
$2x_1+3x_2+3x_1x_2=-11$
$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$
$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$
$\Leftrightarrow x_2=2m-4$
$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$
$-2m-1=x_1x_2=2(2m-4)$
$\Leftrightarrow -2m-1=4m-8$
$\Leftrightarrow 7=6m$
$\Leftrightarrow m=\frac{7}{6}$
cho phương trình x2 - 2(m -1)x - 2m - 1 = 0 (m là tham số)
tìm các giá trị của m để phương trình có 2 nghiệm x1x2 thỏa mãn 2x1 + 3x2 + 3x1x2 = -11
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=(m-1)^2+2m+1=m^2+2\geq 0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m-1$
Khi đó:
$2x_1+3x_2+3x_1x_2=-11$
$\Leftrightarrow 2(x_1+x_2)+3x_1x_2+x_2=-11$
$\Leftrightarrow 4(m-1)+3(-2m-1)+x_2=-11$
$\Leftrightarrow x_2=2m-4$
$x_1=2(m-1)-x_2=2m-2-(2m-4)=2$
$-2m-1=x_1x_2=2(2m-4)$
$\Leftrightarrow -2m-1=4m-8$
$\Leftrightarrow 7=6m$
$\Leftrightarrow m=\frac{7}{6}$
Cho pt :x^2+4x-m^2-5m=0 .tìm m để pt có 2 nghiệm phân biệt thỏa mãn x1x2 |x1 -x2 |=4
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=4+m^2+5m>0\Leftrightarrow (m+1)(m+4)>0$
$\Leftrightarrow m>-1$ hoặc $m< -4(*)$
Áp dụng định lý Vi-et, với $x_1,x_2$ là nghiệm của pt thì: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=-(m^2+5m)\end{matrix}\right.\)
Khi đó:
\(|x_1-x_2|=4\)
\(\Leftrightarrow (x_1-x_2)^2=16\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16\)
\(\Leftrightarrow (-4)^2+4(m^2+5m)=16\)
\(\Leftrightarrow m^2+5m+4=4\)
\(\Leftrightarrow m^2+5m=0\Leftrightarrow m(m+5)=0\Rightarrow m=0\) hoặc $m=-5$. Kết hợp với $(*)$ ta thấy 2 giá trị này đều thỏa mãn.
Vậy........
cho pt: x^2-2(m-3)x+3m^2-8m+5=0.Tìm m để pt có hai nghiệm x1,x2 thỏa mãn x1^2+2x^2-3x1x2=x1-x2
Tìm điều kiện của tham số m để đt y = 2mx - 4m +3 (p) cắt (p) tại 2 điểm phân biệt có hoành độ lớn hơn 1
b) tìm m để Pt : mx^2 + 2 (m-2)x + m - 3 =0 có 2 nghiệm x1,x2 sao cho x1/x2 + x2/x1 =3
c) Tìm m để Pt : x^2 -2mx + m^2 -m =0 có 2 nghiệm x1,x2 thoả : x1^2 + x2^2 = 3x1x2
Giúp mình với ạ!!! Mình cảm ơn rất nhiều
Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi
B1.Cho pt x^2-4x-m^2+3=0.Tìm m để pt có 2no x1,x2 thỏa mãn x1^2+3x1x2=10x2^2