Phân tích đa thức thành phân tử
x +\(\sqrt{xy}\) + \(\sqrt{2x}\) - \(\sqrt{3y}\)- \(\sqrt{6}-3\)
phân tích đa thức thành nhân tử
\(x\sqrt{x}-9\)
\(x-\sqrt{x}-6\)
\(2x+5\sqrt{x}-3\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
Phân tích đa thức thành nhân tử
a,\(xy+y\sqrt{xy}+\sqrt{x}\sqrt{y}\)
b,\(6\sqrt{xy}+6xy-4x\sqrt{x}-9y\sqrt{y}\)
c,\(x+2y\sqrt{x}-3y^2\)
d,a\(a\sqrt{a}-2b\sqrt{b}-3b\sqrt{a}\)
Phân tích đa thức thành nhân tử
\(1.x^2-2xy+5x-10y\)
\(2.x-3\sqrt{x}+\sqrt{xy}-3y\)
\(x^2-2xy+5x-10y\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x+5\right)\left(x-2y\right)\)
\(x^2-2xy+5x-10y\)
\(=\left(x^2-2xy\right)+\left(5x-10y\right)\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+5\right)\)
\(x-3\sqrt{x}+\sqrt{xy}-3y\)
\(=\left(x-3\sqrt{x}\right)+\left(\sqrt{xy}-3y\right)\)
\(=\sqrt{x}\left(\sqrt{x}-3\right)+y\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}+y\right)\)
✰ ღ๖ۣۜDαɾƙ ๖ۣۜBαηɠ ๖ۣۜSĭℓεηтღ✰Giỏi thiệt \(\sqrt{xy}=y\sqrt{x}\)
Đọc lại sách lớp 9, bài LIÊN HỆ GIỮA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG
Phân tích đa thức thành nhân tử (với các căn thức đều đã có nghĩa):
a) A = \(\sqrt{x^3}\) - \(\sqrt{y^3}\) + \(\sqrt{x^2y}\) - \(\sqrt{xy^2}\)
b) B = 5x2 - 7x\(\sqrt{y}\) + 2y
a: \(A=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)
b: \(B=5x^2-7x\sqrt{y}+2y\)
\(=5x^2-5x\sqrt{y}-2x\sqrt{y}+2y\)
\(=5x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(5x-2\sqrt{y}\right)\)
Phân tích đa thức thành nhân tử ( với x > hoặc bằng 0 )
2+\(\sqrt{3}+\sqrt{6}+\sqrt{8}\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
Phân tích đa thức thành nhân tử (với các căn thức đã cho đều có nghĩa)
A = \(x-y-3\left(\sqrt{x}+\sqrt{y}\right)\)
B = \(x-4\sqrt{x}+4\)
C = \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
D = \(5x^2-7x\sqrt{y}+2y\)
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
d: \(=-\left(x+\sqrt{x}-12\right)=-\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)\)
Phân tích đa thức thành nhân tử
\(\dfrac{x^2}{4}\)-xy+y^2
x^2+x+\(\dfrac{1}{\text{4}}\)
x^2+2\(\sqrt{3}\)x+3
4x^2-1
a, \(\dfrac{x^2}{4}-xy+y^2=\left(\dfrac{x}{2}\right)^2-xy+y^2=\left(\dfrac{x}{2}\right)^2-2.\dfrac{x}{2}.y+y^2\)
\(=\left(\dfrac{x^2}{2}-y\right)^2\)
b, \(x^2+x+\dfrac{1}{4}=x^2+\dfrac{1}{2}.2.x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
c, \(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}x+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d, \(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)
`x^2/4-2*x/2*y+y^2`
`=(x/2-y)^2`
`x^2+x+1/4`
`=x^2+2*x*1/2+(1/2)^2`
`=(x+1/2)^2`
`x^2+2sqrt3x+3`
`=x+2xsqrt3+sqrt3^2`
`=(x+sqrt3)^2`
`4x^2-1`
`=(2x)^2-1`
`=(2x-1)(2x+1)`
1. Phân tích đa thức thành nhân tử
\(a)\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}(a>0,b>0)\)
\(b)x-y+\sqrt{xy^2}-\sqrt{y^3}(x>0,y>0)\)
a) \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\)
\(=a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)-\left(\sqrt{a}-\sqrt{b}\right)\sqrt{ab}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b-\sqrt{ab}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(a+b\right)\)
b) \(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)