cho tam giác ABC vuông tại A. Tia phân giác góc ABC cắt AC tại D. CMR: AC>2AD
cho tam giác ABC vuông tại A. trên nửa mặt phẳng không chứa c có bờ là đường thẳng AB vẽ tia Bx sao cho BA là tia phân giác góc CBx. Tia này cắt đường thẳng AC tại D. Qua C vẽ đường thằng vuông góc với AC, đường thẳng này cắt đường thẳng BD tại E. tia phân giác của CBE cắt CE tại F. CMR:
a) góc BCE=góc BEC
b) tổng các góc trong tam giác ABC bằng 180 độ
c)BF vuông góc với CE
vẽ hình hộ mình thì mình sẽ tick
cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc B cắt AC tại D, từ D kẻ DH vuông góc với BC. Trên tia AC lấy E sao cho AE=AB. Đường thẳng vuông góc với AE tại E cắt DH tại K. CMR:
1. BA=BH
2. Góc DBK=45 độ
3. Cho AB=7cm. Tính chu vi tam giác DEK
a) Ta có: tam giác ABC vuông tại A suy ra góc BAC=90 hay BAD=90
Có: DH vuông góc BC=>DHB= 90
Lại có: BD là đường phân giác của góc BAC=>góc ABD=góc HBD
Suy ra tam giác ABD= tam giác HBD (cạnh huyền-góc nhọn)
Suy ra BA=BH (điều phải chứng minh)
1,cho tam giac nhon ABC kẻ AC vuông góc BC , kẻ BE vuông góc AC gọi H là giao điểm của AD và BE biết rằng AH=BC , tinh góc BAC
2, cho tam giác ABC vuông tại A kẻ AH vuông góc BC tia phân giác cua góc HAC cắt BC ở D . CMR tam giác ABC là tam giác cân
cho tam giác ABC vuông tại A , kẻ AH vuông góc với BC tại H
a) Cmr : tam giác HAC đồng dạng tam giác ABC
b) biết AC=16cm , BC=20cm . tính độ dài đoạn AB , AH
c) kẻ tia phân giác BD của góc ABC cắt AH tại I và cắt AC tại D . chứng minh : tam giác AID là tam giác cân
d) chứng minh : AI.AD=IH.DC
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
d) ('Mình ko biết')
a) Xét \(\Delta HAC\) và \(\Delta ABC\) có :
Góc AHC = góc BAC = 90o; góc C chung
=> \(\Delta HAC\) đồng dạng với \(\Delta ABC\) (g.g)
b) Vì \(\Delta ABC\) vuông tại A nên AB2 + AC2 = BC2 => AB2 = BC2 - AC2 = 202 - 162 = 144
=> \(AB=\sqrt{144}=12\left(cm\right)\)
Từ a) => \(\frac{AH}{AB}=\frac{AC}{BC}\) hay \(\frac{AH}{6}=\frac{8}{10}\) => \(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
c) Ta có \(\Delta ABD\) đồng dạng với \(\Delta HBI\) (g.g) ('Bạn tự chứng minh')
=> Góc BIH = góc ADB
Mà góc BIH = góc AID (đ2) => Góc AID = góc ADB
=> Tam giác AID cân tại A
Cho tam giác ABC cân tại A góc A nhọn AB > Bc Kẽ AH vuông góc với BC tại Ha)Chứng minh tam giác AHB = tam giác AHC
b) Qua H kẽ HD vuông góc AB tại D và HE vuông góc AC tại E . Tia DH cắt tia AC ở F
Chứng minh: HC là tia phân giác của EHF
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(ΔAHB=ΔAHC)
\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)
nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)
mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)
nên \(\widehat{EHC}=\widehat{FHC}\)
mà tia HC nằm giữa hai tia HE,HF
nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)
Cho tam giác ABC có góc A= 60 độ, AB< AC , đường cao BH ( H thuộc AC)
a) So sánh góc ABC và góc ACB. Tính góc ABH
b) Vẽ AD là phân giác của góc A (D thuộc BC). Vẽ BI vuông góc AD tại I. CMR tam giác AIB= tam giác BHA
c) Tia BI cắt AC ở E. CMR tam giác ABE đều
d) CMR DC> DB
Cho tam giác ABC vuông tại B, phân giác AD. Từ C kẻ một đường thẳng vuông góc với BC cắt tia AD tại E.
a)CMR : CE>AC
b)Kẻ DFvuông góc AC(F thuộc AC) .CMR: DB>DC
c)CMR: Chu vi tam giác ECD> chu vi tam giác ABD
Cho tam giác ABC vuông tại A phân giác của góc ABC cắt AC tại D từ D kẻ DH vuông góc với BC tại H
a, CM tam giác DAH cân
b, CM góc ABC = 2 DAH
c, kẻ phân giác của góc ACB tia này cắt AB tại E từ E kẻ EK vuông góc với BC tại K. Tính số đo góc KAH
Cho tam giác ABC có AB = AC, tia phân giác của góc A cắt cạnh BC tại D, lấy điểm E trên AD. CMR
a.Tam giác AEB = tam giác AEC
b.ED là phân giác của góc BEC
c.AD vuông góc với BC
anh nguyen tuan anh mới học lớp 6 sao biết được