phân tích đa thức thành nhân tử
a) x8 + x4 + 1 ( bằng cách thêm bớt hạng tử x2 )
HELP ME!!!
Phân tích đa thức sau thành nhân tử bằng cách thêm bớt hạng tử, tách hạng tử
a, 6x2-11x
b, x7+x5+1
c, x8+x4+1
d, x3-5x+8-4
e, x5+x4+1
a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$
$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$
$=(x^2+x+1)(x^5-x^4+x^3-x+1)$
c.
$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2$
$=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$
$=(x^4-x^2+1)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
d.
$x^3-5x+8-4=x^3-5x+4$
$=x^3-x^2+x^2-x-(4x-4)$
$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$
e.
$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$
$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$
$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^2+x)+1]$
$=(x^2+x+1)(x^3-x+1)$
Phân tích đa thwusc thành nhân tử bằng phương pháp thêm bớt 1 hạng tử
a) x4 + 5x3 + 10x - 4
b) x3 + y3 + z3 - 3xyz
c)x8 + x+ 1
d) x7 + x2 + 1
e) x10 + x5 + 1
Giups tui mấy ní ơiii
\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)
a: =x^4+2x^2+5x^3+10x-2x^2-4
=(x^2+2)(x^2+5x-2)
b; =(x+y)^3+z^3-3xy(x+y)-3xyz
=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1
=(x^2+x+1)(x^6-x^5+x^3-x^2+1)
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử:
a) 64 x 4 + 81; b) x 8 + 4 y 4 ; c) x 8 + x 7 +1.
Phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng từ:
a) x 8 + 64; b) x 4 + 4 y 4 ; c) x 5 +x + 1.
Giúp mình với mình đang cần rất gấp
Bài 1: Phân tích đa thức thành nhân tử bằng PP dùng HĐT
(x + 2)2 - (3x - 1)2
Bài 2: Phân tích đa thức thành nhân tử bằng PP nhóm hạng tử
a) x4 - 2x3 + x2 - 2x
b)
c)
d)
e)
f)
Mình rất rất cảm ơn.
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
Bài 3: Phân tích các đa thức sau thành nhân tử bằng phương pháp nhóm các hạng tử
a) x4-x3-x+1 b)x2y+xy2-x-y
c)ax2+a2y-7x-7y d)ax2+ay-bx2-by
e)x4+x3+x+1 g)x2-2xy+y2-xz+yz
h)x2-y2-x+y i)x2-4+2x+1
giúp mình với,mình cần gấp mn ơi
a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)^2\left(x^2+x+1\right)\)
b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
c) Đổi đề: \(a^2x+a^2y-7x-7y\)
\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)
d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)
a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)
e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)
i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)
Phân tích đa thức thành nhân tử bằng cách tách hoặc thêm bớt hạng tử x^2yz + 5xyz -14yz
=yz(x^2+5x-14)
=yz(x^2-2x+7x-14)
=yz[x(x-2)+7(x-2)
=yz(x-2)(x+7)
Phân tích đa thức thành nhân tử bằng cách thêm bớt hạng tử
x8+4y4
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
64x4+81
x8+4y4
x8+x7+1
64x^4+81
=64x^4+144x^2+81-144x^2
=(8x^2+9)^2-(12x)^2
=(8x^2-12x+9)(8x^2+12x+9)
x^8+4y^4
=x^8+4x^4y^2+4y^4-4x^4y^2
=(x^4+2y^2)^2-(2x^2y)^2
=(x^4-2x^2y+2y^2)(x^4+2x^2y+2y^2)
x^8+x^7+1
=x^8+x^7+x^6-x^6+1
=x^6(x^2+x+1)-(x^6-1)
=(x^2+x+1)*x^6-(x-1)(x+1)(x^2+x+1)(x^2-x+1)
=(x^2+x+1)[x^6-(x^2-1)(x^2-x+1)]
=(x^2+x+1)(x^6-x^4+x^2-x^2+x^2-x+1)
=(x^2+x+1)(x^6-x^4+x^2-x+1)