Cho phương trình x^3+(m-6)x-m+5=0
Tìm m để pt có 2 nghiệm phân biệt trái dấu
Cho phương trình
(2m+3)x2+(4m-1)x+1=0
Tìm m để pt có 2 nghiệm phân biệt
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)
\(=16m^2-16m-8\)
Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)
\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+1-8m-12\)
\(=16m^2-16m-11\)
Để pt có 2 nghiệm pb khi \(16m^2-16m-11>0\)
cho pt bậc 2 `(m+2)x^2- 2(m+1)x +m -4 =0` để phương trình có hai nghiệm phân biệt thoả mãn trái dấu , cùng dấu , cùng âm
Đây là toán Viet của lớp 10 chứ ko phải lớp 9, lớp 9 chưa học giải BPT bậc 2 để giải các điều kiện cho bài toán này:
\(\Delta'=\left(m+1\right)^2-2\left(m+2\right)\left(m-4\right)=-m^2+6m+17\)
- Pt có 2 nghiệm pb trái dấu khi:
\(ac=2\left(m+2\right)\left(m-4\right)< 0\Rightarrow-2< m< 4\)
- Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=-m^2+6m+17\ge0\\ac=2\left(m+2\right)\left(m-4\right)>0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-\sqrt{26}\le m\le3+\sqrt{26}\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3-\sqrt{26}\le m< -2\\4< m\le3+\sqrt{26}\end{matrix}\right.\) (1)
- Pt có 2 nghiệm cùng âm khi pt có 2 nghiệm cùng dấu đồng thời:
\(x_1+x_2=\dfrac{m+1}{m+2}< 0\Rightarrow-2< m< -1\) (2)
Kết hơp (1);(2) \(\Rightarrow m\in\varnothing\)
cho pt : x2- 2(m+1)x+4m=0
tìm đk của m để phương trình có 2 nghiệm phân biệt cùng lớn hơn 1
Δ=(2m+2)^2-4*4m
=4m^2+8m+4-16m
=4m^2-8m+4=(2m-2)^2
Để phương trình có hai nghiệm phân biệt thì 2m-2<>0
=>m<>1
x1+x2>2 và x1x2>1
=>2m+2>2 và 4m>1
=>m>1/4
cho phương trình x2-2(m-1)x-3=0
tìm m để pt trên có 2 nghiệm phân biệt x1 , x2 thỏa mãn\(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)
Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)
\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)
Vậy m=1
Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)
Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)
\(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)
\(\Leftrightarrow...\)
Cho phương trình: x 2 – 3(m −5)x + m 2 – 9 = 0. Tìm m để phương trình có 2 nghiệm phân biệt trái dấu.
A. m = 3
B. m > −3
C. m < 3
D. −3 < m < 3
Cho phương trình x² +(m+3)x-2m+2=0 a. Tìm m để phương trình có hai nghiệm trái dấu. b. Tìm m để phương trình có hai nghiệm dương phân biệt. c. Tìm m để phương trình có hai nghiệm âm phân biệt. d. Tìm m để phương trình có ít một nghiệm dương.
Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)
a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0
hay m<-1
b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)
\(=m^2+6m+9-8m-8\)
\(=m^2-2m+1=\left(m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)
Cho pt: x4 - 5x2 + m = 0
Tìm m để phương trình có đúng 2 nghiệm phân biệt
Đặt \(x^2=a\left(a\ge0\right)\)
Phương trình trở thành \(a^2-5a+m=0\)
\(\Delta=\left(-5\right)^2-4\cdot1\cdot m=-4m+25\)
Để phương trình \(x^4-5x^2+m=0\) có đúng 2 nghiệm phân biệt thì phương trình \(a^2-5a+m=0\)(\(a=x^2\)) có nghiệm kép
\(\Leftrightarrow\Delta=0\)
\(\Leftrightarrow-4m+25=0\)
\(\Leftrightarrow-4m=-25\)
hay \(m=\dfrac{25}{4}\)
Vậy: \(m=\dfrac{25}{4}\)
Đặt \(t=x^2\ge0\Rightarrow t^2-5t+m=0\) (1)
Ứng với mỗi giá trị \(t>0\) luôn cho 2 giá trị x phân biệt tương ứng nên pt đã cho có 2 nghiệm pb khi và chỉ khi (1) có đúng 1 nghiệm dương và 1 nghiệm âm
\(\Leftrightarrow\) (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac=m< 0\)
Vậy \(m< 0\)
Bài 1:cho phương trình x^2 - 6x + m=0. Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu
Bài 2 :cho phương trình x^2 + 2 (m+1) x + m^2=0. Tìm m để phương trinh co 2 nghiem phan biet, trong đó có 1 nghiệm bằng -2
Bài 3:cho pt x^2 -(m+5) x + m - 6=0. Tìm m để pt có 1 nghiệm bằng -2. Tim nghiệm còn lại
Bài 4:cho hàm số y=-2x^2 có đồ thị là parabol (P) và hàm số y==4x + m. Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ âm
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán