Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sonyeondan Bangtan
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 11 2019 lúc 6:44

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

Khách vãng lai đã xóa
James Pham
Xem chi tiết
Nguyễn Phúc Hưng
26 tháng 4 2023 lúc 21:44

Ta có: \(x.\left(C^k_n.a^{n-k}.b^k\right)=x.\left(C^k_5.a^{5-k}.b^k\right)=C^k_5.1^{5-k}.2^k.x^k.x\)

\(=C^k_5.2^k.x^{k+1}\)

Mà ta cần tìm số hạng của x5

\(\Rightarrow k+1=5\Leftrightarrow k=4\)

Vậy số hạng của x5 là: \(C^4_5.2^4=80\)

Nguyễn Phúc Hưng
26 tháng 4 2023 lúc 21:55

Ta nhân thêm ''x'' vào số hạng tổng quát vì có ''x'' là nhân tử chung của mỗi số hạng trong khải triển

Vo Thanh Dat
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2022 lúc 19:20

Số hạng tổng quát của khai triển: \(C_7^k.x^k.2^{7-k}\)

Số hạng chứa \(x^5\Leftrightarrow k=5\)

Hệ số của số hạng đó là: \(C_7^5.2^2=...\)

Hàn Nhật Hạ
Xem chi tiết
Quách Minh Hương
Xem chi tiết
lu nguyễn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 11 2019 lúc 23:36

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)

Khách vãng lai đã xóa
Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 23:01

SHTQ là: \(C^k_5\cdot\left(x^3\right)^{5-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_5\cdot x^{15-4k}\)

Số hạng chứa x^3 tương ứng với 15-4k=3

=>4k=12

=>k=3

=>Hệ số là \(C^3_5=10\)

Technology I
9 tháng 1 lúc 21:54

Để tìm hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 , ta sử dụng công thức tổng hạng:

Tổng hạng = ∑ C(n, k)

Trong đó:

C(n, k) là số cấu hình có k phần tử trong tổng hạng nn là số lượng phần tử trong tổng hạngk là số lượng phần tử không chứa x

Vì ta chỉ quan tâm đến số hạng chứa x3, nên không quan tâm đến số lượng phần tử trong tổng hạng n.

Số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2.

Hệ số của số hạng chứa x3 trong khai triển ( x 3 + 1 x ) 5 (với x ≠ 0) là 2/3.

Tài khoản bị khóa
Xem chi tiết
Hoàng Tử Hà
10 tháng 12 2020 lúc 20:13

Cái chỗ vế phải biểu thức nghĩa là gì thế bạn?

Hoàng Tử Hà
10 tháng 12 2020 lúc 20:29

Chắc là thế này \(3A^{n-2}_n\)

\(gt\Leftrightarrow2.n!-\left(4n+5\right)\left(n-2\right)!=3.\dfrac{n!}{2!}\)

\(\Leftrightarrow\dfrac{1}{2}n!=\left(4n+5\right)\left(n-2\right)!\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)\left(n-2\right)!=\left(4n+5\right)\left(n-2\right)!\)

\(\Leftrightarrow\dfrac{1}{2}n\left(n-1\right)=4n+5\Leftrightarrow n=10\)

\(\left(3x^3-\dfrac{1}{x^2}\right)^{10}=\left(3x^3-x^{-2}\right)^{10}=\sum\limits^{10}_{k=0}C^k_{10}3^{10-k}.x^{3\left(10-k\right)}.\left(-1\right)^k.x^{-2k}\)

\(=\sum\limits^{10}_{k=0}C^k_{10}.\left(-1\right)^k.3^{10-k}.x^{30-5k}\)

=> so hang ko chua x:  \(30-5k=0\Leftrightarrow k=6\)

\(\Rightarrow C^6_{10}.\left(-1\right)^6.3^{10-6}=17010\)