tìm GTNN của P= x+5/ căn x+2
Tìm GTNN của bt: căn x cộng 5 trên căn x cộng 2
Ý bạn là tìm GTNN của: \(\frac{\sqrt{x}+5}{\sqrt{x}+2}\) hay \(\frac{\sqrt{x+5}}{\sqrt{x+2}}\)??
1) So sánh A và B:
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
B = căn bậc hai của 196 - 1/căn bậc hai của 6
2) Tìm GTNN của A = 2 + căn bậc hai của x
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
Ai nhanh nhất mình tick nha! Làm ơn giải giùm nhaaaaaaaaaaaaaaaaaaaaaaaa!
A = căn bậc hai của 225 - 1/căn bậc hai của 5 - 1
Tức là :
\(\sqrt{244}\)và \(\sqrt{4}\)
tất nhiên ........
B = căn bậc hai của 196 - 1/căn bậc hai của 6
Tất nhiên ......
2) Tìm GTNN của A = 2 + căn bậc hai của x
\(A=2+\sqrt{x}\)
= \(\sqrt{x+2}\)
3) Tìm GTNN của B = 5 - 2 . căn bậc hai của x - 1
\(B=5-2.\sqrt{x-1}\)
= \(4-2\sqrt{x}\)
Bài 1: Tìm gtnn của A= 1 + căn x-2
Bài 2: Tìm gtln của B= 5- căn 2x-1
1) ta có
\(\sqrt{x-2}\ge0\)với mọi x
=>A=1+\(\sqrt{x-2}\ge1\)
dấu "=" xảy ra khi:
x-2=0
<=>x=2
Vậy GTNN của A là 1 tại x=2
2)
ta có :
\(-\sqrt{2x-1}\le0\)
=>B=5-\(\sqrt{2x-1}\le5\)
Dấu "=" xảy ra khi:
2x-1=0
<=>2x=1
<=>x=1/2
Vậy GTLN của B là 5 tại x=1/2
Bài 1: Tìm gtnn của A= 1 + căn x-2
Bài 2: Tìm gtln của B= 5- căn 2x-1
Tìm GTLN, GTNN của biểu thức sau: P=5/căn(x) - 2
\(\sqrt{x}-2>=-2\)
=>\(P=\dfrac{5}{\sqrt{x}-2}< =-\dfrac{5}{2}\)
Dấu = xảy ra khi x=0
Vậy: Giá trị lớn nhất của P là -5/2 khi x=0
tìm gtnn của biểu thức A=căn x^2 - 2x+ 5
\(A=\sqrt{x^2-2x+5}=\sqrt{x^2-2x+1+4}\)
\(=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)
Đẳng thức xảy ra khi x=1
Ta có x\(^2\)- 2x +5
= x\(^2\)- 2x 1 + 1 +4
= (x-1)\(^2\)+ 4 >= 4 với mọi x
hay x\(^2\)- 2x + 5 >= 4 với mọi x
=> \(\sqrt{x^2-2x+5}\)>= 2
Vậy min A=2 <=> x-1=0
<=> x=1
Bài 1: Tìm GTNN của biểu thức: căn x(căn x-2)/ 1+ căn x
Bài 2: Tìm GTLN của biểu thức: căn x+3/4x
Tìm GTNN và GTLN của Q=-15/ 3+ căn 6x-x^2-5
đề như vậy đúng không ạ
\(Q=-\frac{15}{3+\sqrt{6x-x^2-5}}.\)
ta xét \(6x-x^2-5\)
\(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-2\cdot3x+9-4\right)\)
\(=\left[\left(x-3\right)^2-4\right]\)
\(=-\left(x-3\right)^2+4\)
có \(-\left(x-3\right)^2+4\le4\)
\(\Rightarrow\sqrt{-\left(x-3\right)^2+4}\le\sqrt{4}\)
\(\Rightarrow0\le\sqrt{-\left(x-3\right)^2+4}\le2\)
có \(3+\sqrt{6x-x^2-5}\)
\(\Rightarrow3\le3+\sqrt{-\left(x-3\right)^2+4}\le5\)
\(\Rightarrow-5\le-\frac{15}{3+\sqrt{6x-x^2-5}}\le3\)
=> GTNN của Q là -3
=> GTLN của Q là -5
với \(x-3=0;x=3\)
1) Tìm x thuộc Z thỏa mãn
a)Căn x-2 < 3
b)Căn x+5 < 9 - căn 4x+20
Tìm GTNN của
A= Căn x2-6x+9 + căn x2-12x+36
B= x - 4* căn x-3 +10