10.(x^2-6x)^2-2.(x-3)^2=81
Rút gọn : \(\frac{3}{x^2+6x+6}+\frac{3}{6x-x^2-9}+\frac{x^2+30x-27}{x^4-18x^2+81}\)
Sửa đề: \(\dfrac{3}{x^2+6x+9}-\dfrac{3}{x^2-6x+9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3x^2-18x+27-3x^2-18x-27+x^2+30x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{x^2-6x-27}{\left(x+3\right)^2\cdot\left(x-3\right)^2}=\dfrac{\left(x-9\right)\left(x+3\right)}{\left(x+3\right)^2\cdot\left(x-3\right)^2}\)
\(=\dfrac{\left(x-9\right)}{\left(x^2-9\right)\left(x-3\right)}\)
Phân tích đa thức thành nhân tử:
a) 1+6x-6x^2-x^3
b)x^4-4x^2+4x-1
c)6x^3-x^2-486x+81
d x^2(x+4)^2-(x+4)^2-(x^2-1)
a. \(-x^3-6x^2+6x+1=-x^3+x^2-7x^2+7x-x+1=\left(1-x\right)\left(x^2+7x+1\right)\)
b. \(x^4-4x^2+4x-1=x^4-1-4x\left(x-1\right)=\left(x-1\right)\left[\left(x+1\right)\left(x^2+1\right)-4x\right]\)
\(=\left(x-1\right)\left(x^3+x^2-3x+1\right)\)
c. \(6x^3-x^2-486x+81=6x^3-54x^2+53x^2-477x-9x+81=\left(x-9\right)\left(6x^2+53x-9\right)\)
\(=\left(x-9\right)\left(x+9\right)\left(6x-1\right)\)
d. \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)=x^2\left(x^2+8x+16\right)-x^2-8x-16-x^2+1\)
\(=x^4+8x^3+14x^2-8x-15=x^4+5x^3+3x^3+15x^2-x^2-5x-3x-15\)
\(=\left(x+5\right)\left(x^3+3x^3-x-3\right)=\left(x+5\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
Để phân tích nhân tử các dạng này, em cần nhẩm được nghiệm để biết đc nhân tử chung là gì, sau đó tách để xuất hiện nhân tử chung đó. CHÚC EM HỌC TỐT :))
1) a) Tính (3/4-81)(3^2/5-81)(3^3/6-81)..(3^2000/2003-81)
b) Tính giá trị của biểu thức: 6x^2+5x-2 tại x thõa mãn |x-2|=1
2) Tìm giá trị nguyên lớn nhất của biểu thức MN=15-x/5-x ?
x^2+6x+9
10x-25-x^2
8x^3-1/8
1/25x^2-64y^2
1) \(x^2+6x+9\)
\(=\left(x+3\right)^2\)
2) \(10x-25-x^2\)
\(=-25+10x-x^2\)
\(=-\left(5-x\right)^2\)
3) \(8x^3-\dfrac{1}{8}\)
\(=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
4) \(\dfrac{1}{25}x^2-64y^2\)
\(=\left(\dfrac{1}{5}x\right)^2-\left(8y\right)^2\)
\(=\left(\dfrac{1}{5}x+8y\right)\left(\dfrac{1}{5}x-8y\right)\)
\(x^2+6x+9=\left(x+3\right)^2\)
\(10x-25-x^2=-\left(x-5\right)^2\)
\(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Toán lớp 8
Phân tích thành nhân tử:
a) x^3-4x^2-8x+8
b) 1+6x-6x^2-x^3
c)6x^3-x^2-486x+81
a) x3 - 4x2 - 8x + 8
= x3 + 2x2 - 6x2 - 12x + 4x + 8
= x2(x + 2) - 6x(x + 2) + 4(x + 2)
= (x + 2)(x2 - 6x + 4)
b) 1 + 6x - 6x2 - x3
= -x3 + x2 - 7x2 + 7x - x + 1
= -x2(x - 1) - 7x(x - 1) - (x - 1)
= -(x - 1)(x2 + 7x + 1)
c) 6x3 - x2 - 486x + 81
= 6x2(x - 1/6) - 486(x - 1/6)
= (x - 1/6)(6x2 - 486)
= 6(x - 1/6)(x2 - 81)
= 6(x - 1/6)(x - 9)(x + 9)
Tính
\(\dfrac{3}{x^2+6x+9_{ }}+\dfrac{2}{6x-x-9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
Akai Haruma Nguyễn Huy Tú Nguyễn Huy ThắngHồng Phúc NguyễnPhạm Hoàng Giang......và nhiều bạn nữa giúp mik vs
\(\dfrac{3}{x^2+6x+9}+\dfrac{2}{6x-x^2-9}+\dfrac{x^2+30x-27}{x^4-18x^2+81}\)
\(=\dfrac{3}{\left(x+3\right)^2}+\dfrac{-2}{\left(x-3\right)^2}+\dfrac{x^2+30x-27}{x^4-9x^2-9x^2+81}\)
\(=\dfrac{3}{\left(x+3\right)^2}-\dfrac{2}{\left(x-3\right)^2}+\dfrac{x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{3\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\dfrac{2\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\dfrac{x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{3x^2-18x+27-2x^2-12x-18+x^2+30x-27}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2x^2-18}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2\left(x^2-9\right)}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x^2-9}\)
tìm x biết
1, x mũ 3 + 4x mũ 2 + 4x = 0
2, ( x + 3 ) mũ 2 - 4 = 0
3, x mũ 4 - 9x mũ 2 = 0
4, x mũ 2 - 6x + 9 = 81
5, x mũ 3 + 6x mũ 2 + 9x - 4x = 0
1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)
2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)
3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)
4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)
\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)
5, em xem lại đề nhé
à lag tý @@
5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)
a)\(x^3+4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
b)\(\left(x+3\right)^2-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3-2=0\\x+3+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)
c)\(x^4-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
d)\(x^2-6x+9=81\)
\(\Leftrightarrow\left(x-3\right)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=9\\x-3=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=12\\x=-6\end{cases}}}\)
e)\(x^3+6x^2+9x-4x=0\)
\(\Leftrightarrow x^3+6x^2+5x=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;x=-5\\x=-1\end{cases}}}\)
#H
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 6x^3 - x^2 - 486x + 81
b x^3 - 5x^2+ 3x + 9
c x^3 + 3x^2 +6x + 4
d x^3 + 3x^2 + 6x + 4
giúp mk với
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
a 6x^3 - x^2 - 486x + 81
b x^3 - 5x^2+ 3x + 9
c x^3 + 3x^2 +6x + 4
d x^3 + 3x^2 + 6x + 4
giúp mk với
a. 6x3-x2-486x+81
= 6x3-54x2+53x2-477x-9x+81
= 6x2.(x-9)+53x.(x-9)-9.(x-9)
= (x-9).(6x2+53x-9)
= (x-9)(6x2+54x-x-9)
=(x-9)[6x.(x+9)-(x+9)]=(x-9)(x+9)(6x-1)
b. x3-5x2+3x+9
= x3+x2-6x2-6x+9x+9
=x2.(x+1)-6x.(x+1)+9.(x+1)
=(x+1)(x2-6x+9)=(x+1)(x-3)2
c. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2.(x+1)+2x.(x+1)+4.(x+1)
= (x+1)(x2+2x+4)
d.