( 2x - 4 ) . ( 5x - 15 ) = 0
(2x-8)^4+(3y+45)^2=0
(2x-10)^6+(x+y-7)^4=0
(5x-15)^8+(2x-y+4)^4=0
(2x-8)^4+(3y+45)^2=0
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
a)x=4,y=-15
b)x=5,y=2
còn câu c) mik chịu
(2x-4).(5x-15)=0
<=> 2x-4=0 hoặc 5x-15=0
<=> x=2 hoặc x=3
tick đi
a) (5x-15)(4+6x)=0
b) (2x-1)(5x-6)(1/2x-3/4)=0
c) (3-4x)(2x-3/4-x-4/3)=0
d) (2/3x-1/6)[5(x-1)-3/2-(2-3)(x-1)/3]=0
a) Ta có: \(\left(5x-15\right)\left(4+6x\right)=0\)
\(\Leftrightarrow5\left(x-3\right)\cdot2\cdot\left(2+3x\right)=0\)
\(\Leftrightarrow10\left(x-3\right)\left(2+3x\right)=0\)
Vì 10\(\ne\)0 nên
\(\left[{}\begin{matrix}x-3=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{3;\frac{-2}{3}\right\}\)
b) Ta có: \(\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\5x=6\\\frac{1}{2}x=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{6}{5};\frac{3}{2}\right\}\)
c) Ta có: \(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\)
\(\Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=3\\x=\frac{25}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{12}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{4};\frac{25}{12}\right\}\)
d) Ta có: \(\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5\left(x-1\right)-\frac{3}{2}-\frac{\left(2-3\right)\left(x-1\right)}{3}\right]=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5x-5-\frac{3}{2}-\frac{-1\left(x-1\right)}{3}\right]=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-5-\frac{3}{2}-\frac{1-x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-\frac{13}{2}-\frac{1}{3}+\frac{x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{15x}{3}-\frac{41}{6}+\frac{x}{3}\right)=0\)
\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{16x}{3}-\frac{41}{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{1}{6}=0\\\frac{16x}{3}-\frac{41}{6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{1}{6}\\\frac{16}{3}\cdot x=\frac{41}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}:\frac{2}{3}\\x=\frac{41}{6}:\frac{16}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{41}{32}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{4};\frac{41}{32}\right\}\)
\(a.\left(5x-15\right)\left(4+6x\right)=0\\ \left[{}\begin{matrix}5x-15=0\\4+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)
\(b.\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}=0\right)\\ \left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=-\frac{3}{2}\end{matrix}\right.\)
c.
\(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\\ \Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\\ \left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{2}\end{matrix}\right.\)
a.3x-6=0
b.(x+1)(2x+4)=0
c.5x+3=2x+15
\(a,3x-6=0\\ \Leftrightarrow x=2\\ b,\left(x+1\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\\ c,5x+3=2x+15\\ \Leftrightarrow5x-2x=15-3\\ \Leftrightarrow3x=12\\ \Leftrightarrow x=4\)
\(a.3x-6=0 \) \(\Leftrightarrow 3x=6\) \(\Leftrightarrow x=2\)
\(b.(x+1)(2x+4)=0 \)
\(x+1=0\) Hay \(2x+4=0\)
\(x=-1\) Hay \(x=-2\)
\(c.5x+3=2x+15\)
\(\Leftrightarrow 3x=12\)
\(\Leftrightarrow x=4\)
tìm x
( 3x - 15 )(10 - x)<0
( 2x - 8 ) (6 - x )≥0
( 15 - 5x ) ( 2x - 4)<0
tìm x
( 3x - 15 )(10 - x)<0
( 2x - 8 ) (6 - x )≥0
( 15 - 5x ) ( 2x - 4)<0
Câu 1:
(3\(x\) - 15).(10 - \(x\)) < 0
3\(x-15\) = 0 ⇒ 3\(x\) = 15 ⇒ \(x\) = 15 : 3 ⇒ \(x=5\)
10 - \(x\) = 0 ⇒ \(x=10\)
Lập bảng ta có:
\(x\) | 5 10 |
3\(x\) - 15 | - 0 + + |
10 - \(x\) | + + 0 - |
(3\(x\) - 15).(10 - \(x\)) | - 0 + 0 - |
Theo bảng trên ta có: \(x\) < 5 hoặc \(x\) > 10
Vậy \(x\) < 5 hoặc \(x\) > 10
(2\(x\) - 8).(6 - \(x\)) ≥ 0
2\(x\) - 8 = 0 ⇒ 2\(x\) = 8 ⇒ \(x=8:2\) ⇒ \(x=4\)
6 - \(x\) = 0 ⇒ \(x=6\)
Lập bảng ta có:
\(x\) | 4 6 |
2\(x-8\) | - 0 + | + |
6 - \(x\) | + | + 0 - |
(2\(x-8\)).(6 - \(x\)) | - 0 + | - |
Theo bảng trên ta có: 4 ≤ \(x\) ≤ 6
Vậy \(4\le x\le6\)
(15 - 5\(x\)).(2\(x\) - 4) < 0
15 - 5\(x\) = 0 ⇒ 5\(x\) = 15 ⇒ \(x=15:5\) ⇒ \(x\) = 3
2\(x-4\) = 0 ⇒ 2\(x=4\) ⇒ \(x=2\)
Lập bảng ta có:
\(x\) | 2 3 |
15 - 5\(x\) | + | + 0 - |
2\(x-4\) | - 0 + | + |
(15 - 5\(x\)).(2\(x\) - 4) | - 0 + 0 - |
Theo bảng trên ta có: \(x\) < 2 hoặc \(x\) > 3
Vậy \(x\) < 2 hoặc \(x>3\)
Giải các PT sau:
a,(5x-4)(4x+6)=0 b,(3,5x-7)(2,1x-6,3)=0
c,(4x-10)(24+5x)=0 d,(x-3)(2x+1)=0
e,(5x-10)(8-2x)=0 f,(9-3x)(15+3x)=0
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
16 Tìm x, biết
a) 4(x+2)-7(2x-1)+9(3x-4)=30 ; b) 2(5x-8)-3(4x-5)=4(3x-4)+11
c) 5x(1-2x)-10(x+8)=0 ; d) (5x-3).4x-2x.(10x-3)=15
A. \(4\left(x+2\right)-7\left(2x-1\right)+9\left(3x-4\right)=30\)
\(\Leftrightarrow4x+8-14x+7+27x-36=30\)
\(\Leftrightarrow4x-14x+27x=30-8-7+36\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\) . Vậy \(S=\left\{3\right\}\)
B. \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=16-15-16+11\)
\(\Leftrightarrow10x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{5}\) . Vậy \(S=\left\{-\dfrac{2}{5}\right\}\)
Câu C) bạn xem lại đề nha mik tính ko đc
D. \(\left(5x-3\right)4x-2x\left(10x-3\right)=15\)
\(\Leftrightarrow20x^2-12x-20x^2+6x=15\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{5}{2}\) . Vậy \(S=\left\{-\dfrac{5}{2}\right\}\)
tìm x biết
a x^2 (2x+15)+4(2x+15)=0
b 5x(x-2)-3(x-2)=0
c 2(x+3)-x^2-3x=0
a
\(x^2\left(2x+15\right)+4\left(2x+15\right)=0\\ \Leftrightarrow\left(2x+15\right)\left(x^2+4\right)=0\\ \Leftrightarrow2x+15=0\left(x^2+4>0\forall x\right)\\ \Leftrightarrow2x=-15\\ \Leftrightarrow x=-\dfrac{15}{2}\)
b
\(5x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\5x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0+2=2\\x=\dfrac{0+3}{5}=\dfrac{3}{5}\end{matrix}\right.\)
c
\(2\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\\ \Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\2-x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0-3=-3\\x=2-0=2\end{matrix}\right.\)
a: =>(2x+15)(x^2+4)=0
=>2x+15=0
=>2x=-15
=>x=-15/2
b; =>(x-2)(5x-3)=0
=>x=2 hoặc x=3/5
c: =>(x+3)(2-x)=0
=>x=2 hoặc x=-3