tìm x biết:(x+2)2=36
1, Tìm x, biết \(x^2\) – 36 = 0
A. x = 6. B. x = -6.
C. x = 6; x = -6. D. x = 36 hoặc x = - 36.
2, Tìm x, biết \(x^3\) – 3\(x^2\) + 3x - 1 = 0
A. x = 1. B. x = -1. C. x = 0. D. x = 2.
tìm x,y biết (x+2)^2=36
\(\left(x+2\right)^2=36\)
\(\left(x+2\right)^2=6^2\)
\(\Rightarrow x+2=6\)
\(x=6-2\)
\(x=4\)
tìm x và y (x>y) biết x và y là 2 số tự nhiên liên tiếp x : 36 + y : 36 = 7,25
\(\dfrac{x}{36}+\dfrac{y}{36}=7,25\)
\(\Leftrightarrow x+y=7,25:\dfrac{1}{36}=261\)
Vì x và y là 2 số tự nhiên liên tiếp , x > y
=> x - y = 1
\(\Rightarrow\left\{{}\begin{matrix}x=\left(261+1\right):2=131\\y=130\end{matrix}\right.\)
x : 36 + y : 36 = 7,25
( x + y) : 36 = 7,25
x + y = 7,25 x 36
x + y = 261
vì x và y là hai số tự nhiên liên tiếp mà x > y nên x - y = 1
Áp dụng toán tổng tỉ của lớp 4; 5 ta có
x = ( 261 + 1):2 = 131; y = 131 - 1 = 130
vậy x = 131; y = 130
Tìm x biết: (x + 2)2 = 36
(x+2)^2=36.
=>(x+2)^2=(-6)^2 hoặc =6^2.
Nếu (x+2)^2=(-6)^2.
=>x+2=-6.
=>x=-6-2.
=>x=-8.
Nếu (x+2)^2=6^2.
=>x+2=6.
=>x=6-2.
=>x=4.
Vậy........
(x + 2)2 = 36
(x + 2)2 = 6^2 hoặc (x+2)^2 = (-6)^2
=> x+2 = 6 hoặc x+2 = -6
x= 4 hoặc x= -8
Tìm x biết
x^2*y^2 = 36
\(x^2\times y^2=36\)
\(\Rightarrow\left(x\times y\right)^2=36\)
\(\Rightarrow x\times y=+_-6\)
TH1: \(x\times y=6\)
TH2: XxY=-6
bài này có nhìu giá trị
mk chỉ biết làm đến đây, nếu cho x, y thuộc Z thì sẽ dễ xét hơn
tìm số nguyên x biết (x^2-36).(x^2-81)<0
Tìm x biết (2.x-1)2=36
Tìm \(x,\) \(y\in Z\) biết: \(36-y^2=8(x-2010)^2\)
Ta có: \(y^2\ge0\forall y\in Z\)
\(\Rightarrow-y^2\le0\forall y\in Z\)
\(\Rightarrow36-y^2\le36\forall y\in Z\)
mà \(36-y^2=8\left(x-2010\right)^2\) (*)
nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)
\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)
Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\) (1)
Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)
Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)
+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:
\(36-y^2=0\)
\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)
+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)
Khi đó: (*) ⇔ \(36-y^2=8\)
\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)
+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)
Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)
\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)
Vậy ...
Tìm x,y thuộc N biết :
36 - \(^{y^2}\)= 8.( x-2024)^2
Lời giải:
$y^2=36-8(x-2024)^2\leq 36$ (do $8(x-2024)^2\geq 0$)
$\Rightarrow y\leq 6$
Lại có: $y^2=36-8(x-2024)^2$ chẵn nên $y$ chẵn
$\Rightarrow y\in\left\{0; 2; 4; 6\right\}$
Nếu $y=0$ thì $8(x-2024)^2=36$
$\Rightarrow (x-2024)^2=\frac{36}{8}\not\in\mathbb{N}$ (loại)
Nếu $y=2$ thì $8(x-2024)^2=36-y^2=36-2^2=32$
$\Rightarrow (x-2024)^2=4\Rightarrow x-2024=\pm 2$
$\Rightarrow x=2026$ hoặc $x=2022$ (tm)
Nếu $y=4$ thì $8(x-2024)^2=36-4^2=20$
$\Rightarrow (x-2024)^2=\frac{20}{8}\not\in\mathbb{N}$ (loại)
Nếu $y=6$ thì $8(x-2024)^2=36-6^2=0$
$\Rightarrow x-2024=0$
$\Rightarrow x=2024$ (tm)
Vậy............