x(x-1)+x(x+3)=0
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
tìm x: part 1 : a,(x^3)^2-(x+1)(x-1)=1 b,(x-2)^2-3(x-2)=0 c,(x+2)(x^2-2x+4)-x(x^2+2)=15 d,(x+1)^2-(x+1)(x-2)=0 e,4x(x-2017)-x+2017=0 f,(x+4)^2-16=0 part 2: a,x^3+27+(x+3)(x-9)=0 b,(2x-1)^2-4x^2+1=0 c,2(x-3)+x^2-3x=0 d,x^2-2x+1=6x-6 e,x^3-9x=0
|x-3| + |y-2x | =0
|x| + 3|2x -x ² | =0
|5x ² -5 | + 4|y-7 | =0
||x +1 | + |y-5 |=0
|x ² -1| + |y-1| =0
|x-1 | +|x ²-x |=0
a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)
bạn tin lúc trước tớ nói không tớ sai ở chổ 1x0 đóooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
|x-3| + |y-2x | =0 |x| + 3|2x -x ² | =0 |5x ² -5 | + 4|y-7 | =0 ||x +1 | + |y-5 |=0 |x ² -1| + |y-1| =0 |x-1 | +|x ²-x |=0
a) Ta có: \(\left|x-3\right|+\left|y-2x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x=2\cdot3=6\end{matrix}\right.\)
1) Tim x
a) 3x(x-1)+x-1=0
b)2(x+3)-x^2-3x=0
làm tương tự như bài này nè!
x(x-2)+x-2=0
=>x*((x-2)-x-3)=0
=>(x-2)(x+10=0
hoac x-3=0 =>x=3
hoac 5x-1=0 =>x=1 phan 5
vậy x = 1 phần 5 ;x=3
hoac 5x-1=0 => x=1 phan 5
a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)
\(S=\left\{1;\frac{1}{3}\right\}\)
b)\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(S=\left\{2;-3\right\}\)
a,x+5/x-1+8/x^2-4x+3=x+1/x-3 b,x-4/x-1-x^2+3/1-x^2+5/x+1=0 c,3x/4-5=3-x/2+5x-1/6 d,(x-2)(x+2)-(x-3)(x+4)-2x+3=0 e,(x-1)^2+2(x+1)=5x+5 g,(x-3)(x+4)x=0
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
x . (x+7) = 0
(x+12) . (x-3) = 0
(-x + 5 ). ( 3 - x) = 0
(x - 1 ) . ( x +2) . (-3 - 3) = 0
a.
\(x\left(x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
b.
\(\left(x+12\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
c.
\(\left(-x+5\right)\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
d.
Em kiểm tra lại ngoặc cuối của câu này
(x+5) . (x-4) = 0
(x-1) . (x-3)=0
(3-x)-(x-3)=0
x. (x+1)=0
\(a,\left(x+5\right)\left(x-4\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0.\\x-4=0.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5.\\x=4.\end{matrix}\right.\)
Vậy..........
\(b,\left(x-1\right)\left(x-3\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x-3=0.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=3.\end{matrix}\right.\)
Vậy..........
\(c,\) Sửa đề:
\(\left(3-x\right)\left(x-3\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0.\\x-3=0.\end{matrix}\right.\)
\(\Leftrightarrow x=3.\)
Vậy..........
\(d,x\left(x+1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0.\\x+1=0.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=-1.\end{matrix}\right.\)
Vậy..........
(3 - \(x\)) - (\(x-3\)) = 0
3 - \(x\) - \(x\) + 3 = 0
(3 + 3) - (\(x+x\)) = 0
6 - 2\(x\) = 0
2\(x\) = 6
\(x\) = 6 : 2
\(x\) = 3
Vậy \(x\) = 3
Tìm x
1. x(x+7)=0
2. (x+12)(x-3)=0
3. (-x+5)(3-x)=0
4. x(2+x)(7-x)=0
5. (x-1)(x+2)(-x-3)=0
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
1. x ( x + 7 ) = 0
( 1 ) x = 0
( 2 ) x + 7 = 0 => x = -7
S = { -7 ; 0 }
2. ( x + 12 ) ( x - 3 ) = 0
( 1 ) x + 12 = 0 => x = -12
( 2 ) x - 3 = 0 => x = 3
S = { -12 ; 3 }
3. ( -x + 5 ) ( 3 - x ) = 0
( 1 ) -x + 5 = 0 => -x = -5 => x = 5
( 2 ) 3 - x = 0 => x = 3
S = { 3 ; 5 }
4. x ( 2 + x ) ( 7 - x ) = 0
( 1 ) x = 0
( 2 ) 2 + x = 0 => x = -2
( 3 ) 7 - x = 0 => x = 7
S = { -2 ; 0 ; 7 }
5. ( x - 1 ) ( x + 2 ) ( -x - 3 ) = 0
( 1 ) x - 1 = 0 => x = 1
( 2 ) x + 2 = 0 => x = -2
( 3 ) -x - 3 = 0 => -x = 3 => x = -3
S = { -3 ; -2 ; 1 }
tìm x
1/ x.(x+7)=0
2/ (x+12).(x-3)=0
3/ (-x+5).(3-x)=0
4/ x.(2+x).(7-x)=0
5/ (x-1).(x+2).(-x-3)=0
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)