giải pt
a) -3x\(^2\)+15x=0 b)2x\(^2\)-32=0 c)2x\(^2\)-5x+1=0
❤ s ❤
\(a.-3x^2+15x=0\)
\(\Leftrightarrow3x\left(-x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\-x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(b.2x^2-32=0\)
\(\Leftrightarrow2x^2=32\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow\left|x\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(c.2x^2-5x+1=0\)
\(a=2;b=-5;c=1\)
\(\Delta=\left(-5\right)^2-4.2.1=17>0\)
Do \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt:
\(x_1=\dfrac{5+\sqrt{17}}{4}\)
\(x_2=\dfrac{5-\sqrt{17}}{4}\)
\(a,-3x^2+15x=0\\ -3x\left(x-5\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(b,\\ 2\left(x^2-16\right)=0\\ \Leftrightarrow x^2-16=0\\ \Leftrightarrow\left(x-4\right)\left(x+4\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(c,\\ \Delta=5^2-4.2=17\\ \Rightarrow x_1,x_2=\dfrac{\Delta\pm b}{2ac}\\ =\dfrac{5\pm\sqrt{17}}{4}\)
Giải các PT sau:
a,(5x-4)(4x+6)=0 b,(3,5x-7)(2,1x-6,3)=0
c,(4x-10)(24+5x)=0 d,(x-3)(2x+1)=0
e,(5x-10)(8-2x)=0 f,(9-3x)(15+3x)=0
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
Giải pt b) 2x2-5x2+3x=0
ta có : \(2x^2-5x^2+3x=0\)
\(\Leftrightarrow-3x^2+3x=0\)
\(\Leftrightarrow-3x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy tập nghiệm \(S=\left\{0;1\right\}\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
I) giải các pt tích:
1) 3x - 12= 5x(x - 4)
2) 3x - 15= 2x(x - 5)
3) 3x(2x - 3) + 2(2x - 3)= 0
4) (4x - 6) (3 - 3x)= 0
1) Ta có: 3x-12=5x(x-4)
\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3x-12-5x^2+20x=0\)
\(\Leftrightarrow-5x^2+23x-12=0\)
\(\Leftrightarrow-5x^2+20x+3x-12=0\)
\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)
2) Ta có: 3x-15=2x(x-5)
\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)
3) Ta có: 3x(2x-3)+2(2x-3)=0
\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)
4) Ta có: (4x-6)(3-3x)=0
\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)
4) (4x - 6 ) ( 3 - 3x ) = 0
<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)
Bài 1 :
a, Ta có : \(3x-12=5x\left(x-4\right)\)
=> \(3x-12=5x^2-20x\)
=> \(3x-12-5x^2+20x=0\)
=> \(5x^2-23x+12=0\)
=> \(5x^2-20x-3x+12=0\)
=> \(5x\left(x-4\right)-3\left(x-4\right)=0\)
=> \(\left(5x-3\right)\left(x-4\right)=0\)
=> \(\left[{}\begin{matrix}5x-3=0\\x-4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{5}\\x=4\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{3}{5}\) và x = 4 .
b, Ta có : \(3x-15=2x\left(x-5\right)\)
=> \(3x-15-2x\left(x-5\right)=0\)
=> \(3\left(x-5\right)-2x\left(x-5\right)=0\)
=> \(\left(3-2x\right)\left(x-5\right)=0\)
=> \(\left[{}\begin{matrix}3-2x=0\\x-5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(\frac{3}{2}\) và x = 5 .
c, Ta có : \(3x\left(2x-3\right)+2\left(2x-3\right)=0\)
=> \(\left(3x+2\right)\left(2x-3\right)=0\)
=> \(\left[{}\begin{matrix}3x+2=0\\2x-3=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}3x=-2\\2x=3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = \(-\frac{2}{3}\) và x = \(\frac{3}{2}\) .
d, Ta có : \(\left(4x-6\right)\left(3-3x\right)=0\)
=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}4x=6\\-3x=-3\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{6}{4}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1 và x = \(\frac{6}{4}\) .
Giải pt sau:
a, 3x^2+2x-1=0 b, x^2-5x+6=0 c, x^2-3x+2=0 d, 2x^2-6x+1=0
a) 3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> 3x( x + 1 ) - ( x + 1 ) = 0
<=> ( x + 1 )( 3x - 1 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
c) x2 - 3x + 2 = 0
<=> x2 - x - 2x + 2 = 0
<=> x( x - 1 ) - 2( x - 1 ) = 0
<=> ( x - 1 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
d) 2x2 - 6x + 1 = 0
<=> 2( x2 - 3x + 9/4 ) - 7/2 = 0
<=> 2( x - 3/2 )2 = 7/2
<=> ( x - 3/2 )2 = 7/4
<=> \(\left(x-\frac{3}{2}\right)=\left(\pm\sqrt{\frac{7}{4}}\right)^2=\left(\pm\frac{\sqrt{7}}{2}\right)^2\)
<=> \(\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{7}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{7}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{7}}{2}\\x=\frac{3-\sqrt{7}}{2}\end{cases}}\)
1.giải các pt sau
|a)2(x+5)-x^2-5x=0
|b)2x^2+3x-5=0
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x=2\) hoặc \(x=-5\)
a,\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy...
b,\(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)
Vậy...
b.
\(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x=1\end{matrix}\right.\)
Giải các pt sau = cách đưa về pt tích:
a,(3x-1)(5x+3)=(2x+3)(3x-1)
b,9x2 -1=(3x+1)(2x-1)
c,(4x-3)2 = 4(x2-2x+1)
d,2x3 +5x2 -7=0
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
Mình làm lại rồi nhé!
a, (3x - 1)(5x + 3) = (2x + 3)(3x - 1)
⇔ 5x + 3 = 2x + 3
⇔ 3x = 0
⇔ x = 0
Vậy phương trình có nghiệm là x = 3.
b, 9x2 - 1 = (3x + 1)(2x - 1)
⇔ (3x + 1)(3x - 1) = (3x + 1)(2x - 1)
⇔ 3x - 1 = 2x - 1
⇔ x = 0
Vậy phương trình có nghiệm là x = 0
Giải pt
2x3-5x2+3x =0
(x-3)2 =(2x+1)2
(3x-1)(x2+2)=(3x-1)(7x-10)
a) \(2x^3-5x^2+3x=0\)
\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow x\left(2x^2-2x-3x+3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy .................
b) \(\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+3\right)\left(2x+1+x-3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...............
c) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-7x+12\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
P/s: tới đây bn tự giải tiếp nha