Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Dương Ngọc Minh
Xem chi tiết
Hoàng Khương Duy
Xem chi tiết
shir
Xem chi tiết
Người này .........đã .....
8 tháng 12 2021 lúc 11:27

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

Minh Anh Vũ Lê
Xem chi tiết
trần văn huân
12 tháng 11 2017 lúc 18:39

mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)

ta có: A = 5+5^2+5^3+...+5^100

vì 5 chia hết cho 5

    5^2 chia hết cho 5

    5^3 chia hết cho 5

    .......

    5^100 chia hết cho 5

    nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)

Trịnh Quỳnh Nhi
12 tháng 11 2017 lúc 18:45

a, gọi UCLN(2n+1,3n+1) là d

Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+1 chia hết cho d=> 6n+2 chia hết cho     d 

=> (6n+3)-(6n+2)=1 chia hết cho d 

=> d là ước của 1

Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau

Online_Math
12 tháng 11 2017 lúc 18:47

Câu 1:

a) Gọi d ∈ ƯC (2n + 1 ; 3n + 1)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau.

b) A = 5 + 5+ 5+ ... +  5100

A = (5 + 52) + (53 + 54) + ... + (599 + 5100)

A = 5 . (1 + 5) + 53 . (1 + 5) + ... + 599 . (1 + 5)

A = 5 . 6 + 53 . 6 + ... + 599 . 6

A = 6 . (5 + 53 + ... + 599\(⋮\)6

Vậy A là hợp số.

Câu 2: Gọi d ∈ ƯC (5n + 3 ; 3n + 2)

\(\Rightarrow\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow5\left(3n+2\right)}-3\left(5n+3\right)⋮d\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ƯCLN (5n + 2 ; 3n + 2) = 1

Trần Thị Trúc Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2022 lúc 21:04

Bài 1

Để phân số ko tồn tại thì (n-2)(n+1)=0

=>n=2 hoặc n=-1

Bài 4:

Để phân số không tồn tại thì (2n-1)(n2+1)=0

=>2n-1=0

hay n=1/2

Nguyễn Thị Thanh Lộc
Xem chi tiết
Thắng Nguyễn
24 tháng 6 2016 lúc 18:36

a)Để n+3/n-2 thuộc Z

=>n+3 chia hết n-2

=>n-2+5 chia hết n-2

=>5 chia hết n-2

=>n-2 thuộc Ư(5)={1;-1;5;-5}

=>n thuộc {3;1;7;-3}

Nguyễn Việt Hoàng
25 tháng 6 2016 lúc 7:35

a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z

=> n+3 chia hết n-2

=> (n-2) +5 chia hết n-2

=>5 chia hết n-2

=>n-2 thuộc Ư(5)={1;-1;5;-5}

Ta có:

n -21-1-55
n31-37
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 8:25

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)

Anh Phạm
Xem chi tiết
Nguyễn Huy Tú
4 tháng 1 2021 lúc 11:24

\(3n+2⋮3n-5\)

\(3n-5+7⋮3n-5\)

\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)

3n - 517
3n612
n2 tm4 tm
Khách vãng lai đã xóa
Nguyễn Hoàng Ngân
Xem chi tiết