tại sao:3n-3+3+2=3(n-1)+5
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Tại sao: \(\left(n-1\right)^3+n^3+\left(n+1\right)^3=3n^3-3n+18n+9n^2+9\)
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)
Câu 1 :
a) Chứng minh rằng 2n + 1 và 3n +1 là hai số nguyên tố cùng nhau.
b)Cho A : 5+52+53+...+ 5100. Hỏi a là số nguyên tố hay hợp số ? Tại sao ?
Câu 2:
Tìm ƯCLN (5n+3 : 3n+2) : n thuộc N
mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)
ta có: A = 5+5^2+5^3+...+5^100
vì 5 chia hết cho 5
5^2 chia hết cho 5
5^3 chia hết cho 5
.......
5^100 chia hết cho 5
nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)
a, gọi UCLN(2n+1,3n+1) là d
Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+1 chia hết cho d=> 6n+2 chia hết cho d
=> (6n+3)-(6n+2)=1 chia hết cho d
=> d là ước của 1
Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau
Câu 1:
a) Gọi d ∈ ƯC (2n + 1 ; 3n + 1)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy 2n + 1 và 3n + 1 là 2 số nguyên tố cùng nhau.
b) A = 5 + 52 + 53 + ... + 5100
A = (5 + 52) + (53 + 54) + ... + (599 + 5100)
A = 5 . (1 + 5) + 53 . (1 + 5) + ... + 599 . (1 + 5)
A = 5 . 6 + 53 . 6 + ... + 599 . 6
A = 6 . (5 + 53 + ... + 599) \(⋮\)6
Vậy A là hợp số.
Câu 2: Gọi d ∈ ƯC (5n + 3 ; 3n + 2)
\(\Rightarrow\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow5\left(3n+2\right)}-3\left(5n+3\right)⋮d\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ƯCLN (5n + 2 ; 3n + 2) = 1
1. Tìm các giá trị nguyên của n sao cho phân số \(\frac{-3}{\left(n-2\right)\left(1+n\right)}\) không tồn tại
2. Tìm các giá trị nguyên của n sao cho phân số \(\frac{-5}{\left(n+2\right)\left(1+3n\right)}\) không tồn tại
3. Tìm các giá trị nguyên của n sao cho phân số \(\frac{-3}{\left(2n-1\right)\left(1+3n\right)}\) không tồn tại
4. Tìm các giá trị nguyên của n sao cho phân số \(\frac{-3}{\left(2n-1\right)\left(1+n^2\right)}\) không tồn tại
Bài 1
Để phân số ko tồn tại thì (n-2)(n+1)=0
=>n=2 hoặc n=-1
Bài 4:
Để phân số không tồn tại thì (2n-1)(n2+1)=0
=>2n-1=0
hay n=1/2
3. tìm số nguyên n sao cho
a) n+3/ n -2 là số nguyên
b) n+7/ 3n -1 là số nguyên
c)3n+2/ 4n-5 là số nguyên
a)Để n+3/n-2 thuộc Z
=>n+3 chia hết n-2
=>n-2+5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
=>n thuộc {3;1;7;-3}
a)Để \(\frac{\text{n+3}}{\text{n-2}}\) \(\in\) Z
=> n+3 chia hết n-2
=> (n-2) +5 chia hết n-2
=>5 chia hết n-2
=>n-2 thuộc Ư(5)={1;-1;5;-5}
Ta có:
n -2 | 1 | -1 | -5 | 5 |
n | 3 | 1 | -3 | 7 |
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)
Tìm số nguyên sao cho
n+3/n+2 là số nguyên âm
n+7/3n-1 là số nguyên
3n+2/3n-5 là số tự nhiên
\(3n+2⋮3n-5\)
\(3n-5+7⋮3n-5\)
\(7⋮3n-5\)hay \(3n-5\inƯ\left(7\right)=\left\{1;7\right\}\)
3n - 5 | 1 | 7 |
3n | 6 | 12 |
n | 2 tm | 4 tm |
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63