S=1/1+1/2+1/3+...+1/n cho đén khi 1/n
cho S=1+2+5+14+...+3n-1+1 phần 2, khi n là 1 số nguyên dương
vậy n=...........
Viết chương trình tính \(S=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}+...\)cho đến khi S>a với a là một số cho trước ,n là một số nguyên dương
viết chương trình tính toỏng S:
S= 1+1/2+1/3+....+1/N+...
cho đến khi 1/N<0,001 thì dừng lại
cấu trúc while...do
viết chương trình tính tổng S:
S=1+1/2+1/3+...+1/N+...
cho đến khi 1/N<0,001 thì dừng lại
câu lệnh While.. do
Cho s=1-2+2^2-2^3+......-2^2013+2^2014 Khi đó 3s-1=2^n .vậy n=
Viết chương trình tính \(S=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}+...\)cho đến khi S>a với a là một số cho trước n là một số nguyên dương (ghi rõ ràng được không ạ)
#include <bits/stdc++.h>
using namespace std;
double s,a;
int i,n;
int main()
{
cin>>a;
s=0;
n=0;
while (s<=a)
{
n=n+1;
s=s+1/(n*1.0);
}
cout<<n;
return 0;
}
cho S = 1-2+2^2-2^3+...-2^2013+2^2014.Khi đó 3S - 1 =2^n. Vậy n =...
2S = 2 - 22 + 23 - 24 +...- 22014 + 22015
=> S + 2S = 1 + 22015 => 3S = 1 + 22015 => 3S - 1 = 22015 => n = 2015
Cho: \(S=\dfrac{1^2-1}{1}+\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+....+\dfrac{n^2-1}{n^2}\)(n∈N*). CMR S không phải là số nguyên.
Lời giải:
$n=1$ thì $S=0$ nguyên nhé bạn. Phải là $n>1$
\(S=1-\frac{1}{1^2}+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)
\(=n-\underbrace{\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)}_{M}\)
Để cm $S$ không nguyên ta cần chứng minh $M$ không nguyên. Thật vậy
\(M> 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n(n+1)}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(M>1+\frac{1}{2}-\frac{1}{n+1}>1\) với mọi $n>1$
Mặt khác:
\(M< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{(n-1)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)
\(M< 1+1-\frac{1}{n}< 2\)
Vậy $1< M< 2$ nên $M$ không nguyên. Kéo theo $S$ không nguyên.
S=1+2+5+14+....+(3n-1+1)/2
khi n là 1 số nguyên dương