Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiếng anh123456
Xem chi tiết
Alice
9 tháng 8 2023 lúc 8:32

Gọi \(\text{ƯCLN(21n+4,14n+3)}\) là \(\text{d}\)

\(\Rightarrow\) \(\text{21n+4 ⋮ d}\)

\(\text{14n+3 ⋮ d}\)

\(\Rightarrow\) \(\text{[3(14n+3)-2(21n+4) ⋮ d}\)

\(\Rightarrow\) \(\text{[42n+9-42n-8] ⋮ d}\)

\(\Rightarrow\) \(\text{1 ⋮ d}\)

\(\Rightarrow\) \(\text{d =1( đpcm )}\)

 

Nguyễn Minh Hiếu
Xem chi tiết
trần thu phương
31 tháng 7 2016 lúc 11:01

gọi UCLN( 14n +3 , 21n +4 ) =d  (1)

=> 21n+4  và 14n+3 chia hết cho d => 21n+4 - 14n-3  chia hết cho d 

=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d 

=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2) 

từ (1) ,(2) => dpcm

Nguyễn Hồng Hà
9 tháng 4 2017 lúc 10:45

Gọi UCLN(14n+3,21n+4) =a

ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a

suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a

suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a

suy ra (14n+3) - (14n+2) chia hết cho a

suy ra 14n+3 - 14n-2 chia hết cho a

 suy ra 1 chia hết cho a

và a thuộc U(1) = 1

Vậy 14n+3/14n+4 là phân số tối giản

chúc bạn học tốt

Le Giang
Xem chi tiết
thomas lê
24 tháng 8 2015 lúc 19:01

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

Nguyễn Quý Trang
27 tháng 1 2017 lúc 22:31

Khó nhỉ

Nguyễn Quý Trang
29 tháng 1 2017 lúc 0:12

ĐPCM là gì

Bùi Hồng Sang
Xem chi tiết
Diệu Anh
26 tháng 4 2020 lúc 18:39

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

Khách vãng lai đã xóa
Huỳnh Rạng Đông
Xem chi tiết
chi chảnh chọe
1 tháng 1 2017 lúc 8:36

dạ em chào anh ghi cái gì mà tui ko hỉu gì hết

Nguyễn Hương Ly
Xem chi tiết
tạ dức duy
1 tháng 3 2015 lúc 18:04

 

giải

gọi d ưcln {21n+4 và 14 n+3} =>

(21n+4) chia hết cho d=> [2.(21n+4)] chia hết cho d =>(42n+8)chia hết cho d(1)

(14n+3)chia hết cho d=> [3.(14n+3)] chia hết cho d => (42n+9)chia hết cho d(2)

từ 1 và 2  => [(42n+9)-(42n+8)] chia hết cho d =>   (42n+9-42n-8)chia hết cho d => [(42n_42n) +(9-8)] chia hết cho d => 1 chia hết cho d => d =1 mà d lại là ưcln {21n+4 và 14n+3)(n thuộc N)

vậy biểu thức đã được chứng minh

 

 

 

Nguyễn Thị Minh Ánh
Xem chi tiết
secret1234567
Xem chi tiết
Phía sau một cô gái
12 tháng 1 2022 lúc 9:31

Gọi ƯCLN 21n + 4 và 14n + 3 là d ( d ∈ N và d ≥ 1 )

Khi đó:  2 ( 21n + 4 ) ⋮ d  và 3 ( 14n + 3 ) ⋮ d

hay 42n + 8 ⋮ d    và 42n + 9 ⋮ d

Suy ra   42n + 9 - 42n + 8 ⋮ d   ⇒ 1 ⋮ d

Vậy d = 1 

Như vậy phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với n là số tự nhiên

Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 9:28

Gọi d=UCLN(14n+3;21n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy: 14n+3/21n+4 là phân số tối giản

Nguyễn Lê Nhật Linh
Xem chi tiết
Devil
14 tháng 5 2016 lúc 17:07

gọi d là UCLN(21n+4;14n+3)

ta có:

[3(14n+3)]-[2(21n+4)]chia hết d

=>[42n+9]-[42n+8] chia hết d

=>1 chia hết d

=>d=1

=>phân số trên tối giản

Lương Ngọc Anh
14 tháng 5 2016 lúc 17:04

gọi ƯCLN (21n+4;14n+3)=d

=> 21n+4 chia hết cho d

     14n+3 chia hết cho d

=> 42n+8 chia hết cho d

     42n+9 chia hết cho d

=> 1chia hết cho d

=> d=1

=>\(\frac{21n+4}{14n+3}\)là phân số tối giản.(đpcm)

(hình như đây là toán lớp 6 thì phải:D)