Tìm các số nguyên m để
(m+1)(m^2+2m) là một số chính phương
Tìm các số nguyên m để m(m+1)(m+2) là một số chính phương
Tìm m nguyên để 3m^3 + 2m^2 + 3m + 2 là một số chính phương.
tìm các số m nguyên thoả mãn
(m+1)(m2 +2m) là số chính phương
\(k^2=\left(m+1\right)\left(m^2+2m\right)\) là số chính phương
\(\Rightarrow k^2=m\left(m+1\right)\left(m+2\right)\ge0\)
Lập bảng xét dấu
\(m\) | \(-2\) \(-1\) \(0\) |
\(m\) | \(-\) \(|\) \(-\) \(|\) \(-\) \(0\) \(+\) |
\(m+1\) | \(-\) \(|\) \(-\) \(0\) \(+\) \(|\) \(+\) |
\(m+2\) | \(-\) \(0\) \(+\) \(|\) \(+\) \(|\) \(+\) |
\(m\left(m+1\right)\left(m+2\right)\) | \(-\) \(0\) \(+\) \(0\) \(-\) \(0\) \(+\) |
\(\Rightarrow\left[{}\begin{matrix}-2\le m\le0\\m>0\end{matrix}\right.\)
\(TH1:\) \(-2\le m\le0\Rightarrow m\in\left\{-2;-1;0\right\}\) thỏa mãn \(k^2=0\ge0\)
\(TH2:\) \(m>0\)
\(k^2=\left(m+1\right)\left(m^2+2m\right)\)
\(d=UC\left(m+1;m^2+2m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}m+1⋮d\\m^2+2m⋮d\end{matrix}\right.\)
\(\Rightarrow m^2+2m-2\left(m+1\right)⋮d\)
\(\Rightarrow m^2+2m-2m-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\in\left\{-1;1\right\}\)
\(\Rightarrow\left(m+1\right)\left(m^2+2m\right)\) là số chính phương khi chúng là số chính phương.
Ta lại có :
\(\left(m+1\right)\left(m^2+2m\right)=m\left(m+1\right)\left(m+2\right)\) là tích của 3 số liên tiếp nhau không phải là số chính phương khi m>0
Vậy \(m\in\left\{-2;-1;0\right\}\) thỏa mãn đề bài
Cho phương trình (2m−5)x2 −2(m−1)x+3=0 (1); với m là tham số thực
1) Tìm m để phương trình (1) có một nghiệm bằng 2, tìm nghiệm còn lại.
3) Tìm giá trị của m để phương trình đã cho có nghiệm
4) Xác định các giá trị nguyên của để phương trình đã cho có hai nghiệm phân biệt đều nguyên dương
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
Cho đa thức f(x) có bậc 2 thỏa mãn: f(0) = 2010; f(1) - f(0) = 1; f(-1) - f(1) = 1.
a) Chứng minh rằng: f(2) = 2015.
b) Tìm số chính phương m để f(2m) - f(2) - f(0) = 5m2 - 3m - 1.
(biết "số chính phương là bình phương của một số nguyên")
a) Giả sử f(x)=ax2+bx+c
f(0)=0 <=> 0.a+0.b+c=2010 => c=2010
f(1)-f(0)=1 <=> f(1) =2011 <=> a+b+c=2011=> a+b=1(1)
f(-1)-f(1)=1 <=> f(-1)=2012<=> a-b+c=2012 => a-b=2(2)
Từ (1), (2), (3) => a=3/2,b=-1/2,c=2010
=> f(x)=3/2.x2-1/2.x+2010
=>f(2)=3/2.4-1/2.2+2010=2015 (đpcm)
b) f(2m)-f(2)-f(0)=5m2-3m-1
3/2.4m2-1/2.2m+2010-2015-2010=5m2-3m-1
<=>6m2-m-2015=5m2-3m-1
<=>m2+2m-2014=0
<=> \(\orbr{\begin{cases}m=-1+\sqrt{2015}\\m=-1-\sqrt{2015}\end{cases}}\)
=> Không có số chính phương m thỏa mãn
Mình góp ý chút nhé số chính phương là bình phương của một số tự nhiên nhé =))
Bài 3: Tìm số nguyên n để C=4n^2+n+4 là số chính phương.
Bài 4: Tìm số nguyên n để A=n^2+6n+2 là số chính phương.
Bài 5: Tìm số nguyên n để B=n^2+n+23 là số chính phương.
Bài 6: Tìm số tự nhiên n để M=1!+2!+3!+....+n! là số chính phương.
Bài 7: Tìm số nguyên n để N=n^2022+1 là số chính phương.
1) Tìm các số tự nhiên n để số 3^n+19 là số chính phương
2) Cho m,n là 2 số nguyên dương thỏa mãn m+n-1 là 1 số nguyên tố và m+n-1 là 1 ước của 2(m^2+n^2)-1 CMR m=n
Cho phương trình x² - (2m + 2)x + 2m = 0 (1), với m là tham số. Tìm tất cả các giá trị của m để phương trình (1) nhận 4 + √2017 là một nghiệm.
THAY X=4+\(\sqrt{2017}\)VÀO PHƯƠNG TRÌNH=>PT CÓ DẠNG ;GÌ ĐÓ GÌ ĐÓ VIẾT RA NHEN<lười chảy nước>
cho pt cộng với chất xúc tác cho ló pư nhanh(hehe)....=\(2025+6\sqrt{2017}-6m-2m\sqrt{2017}=0\)
=>\(0m^2-\left(6+2\sqrt{2017}\right)m+2025+6\sqrt{2017}=0\)rùi tự giải đenta nha, mệt mỏi qué rùi tui coằn ik ngủ mai kiểm tra, nếu rảnh mai tui qua cho kết quả nha sỏ ry nhìu
chắc qua bùn ngủ qué ko giải đenta nha^,^
m=\(\frac{2025+6\sqrt{2017}}{6+2\sqrt{2017}}\)
1.Tìm số nguyên a để a^4-a^3+2a^2 là số chính phương.
2.Cho a,b là các số nguyên tố lớn hơn 3. C/m a^2-b^2 chia hết cho 24.
3.Tìm số hữu tỉ x để số y=x^2+7x là số chính phương.
Câu 2: Nếu a,b là số nguyên tố lớn hơn 3 => a,b lẻ
vì a ;b lẻ nên a;b chia 4 dư 1 hoặc 3(vì nếu dư 2 thì a ;b chẵn) đặt a = 4k +x ; b = 4m + y
với x;y = {1;3}
ta có:
a^2 - b^2 = (a-b)(a+b) = (4k -4m + x-y)(4k +4m +x+y) =
16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y)
nếu x = 1 ; y = 3 và ngược lại thì x+y chia hết cho 4 và x-y chia hết cho 2
=> 16(k-m)(k+m) + 4(k-m)(x+y) + 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
nếu x = y thì
x-y chia hết cho 8 và x+y chia hết cho 2
=> 4(k-m)(x+y) chia hết cho 8 và 4(k+m)(x-y) + (x-y)(x+y) chia hết cho 8
=> a^2 - b^2 chia hết cho 8
vậy a^2 - b^2 chia hết cho 8 với mọi a,b lẻ (1)
ta có: a;b chia 3 dư 1 hoặc 2 => a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (2)
từ (1) và (2) => a^2 -b^2 chia hết cho 24
Tick nha TFBOYS