Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Đoàn
Xem chi tiết
Nguyễn Mạnh Khang
Xem chi tiết
Nguyễn Hà Thảo My
Xem chi tiết
Tùng Nguyễn Bá
Xem chi tiết
Ngu Ngu Ngu
5 tháng 5 2017 lúc 20:58

Ta có: \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\frac{c}{ab}-\frac{a}{bc}-\frac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (Đúng)

Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (Đpcm)

Phan Thiên
Xem chi tiết
Võ Đông Anh Tuấn
3 tháng 5 2017 lúc 17:21

Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)

Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )

BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D

Mai Nguyen
Xem chi tiết
Kiệt Nguyễn
9 tháng 11 2019 lúc 20:10

Ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow a+b+c=ab+bc+ac\)

\(\Leftrightarrow ab+bc+ac-a-b-c=0\)

\(\Leftrightarrow ab+bc+ac-a-b-c+abc-1=0\)(Vì abc = 1)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\)Hoặc a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0

\(\Leftrightarrow\)Hoặc a = 1 hoặc b = 1 hoặc c = 1 

Vậy có ít nhất một trong ba số a,b,c bằng 1 (đpcm)

Khách vãng lai đã xóa
Sun Dương
Xem chi tiết
Ngô Tấn Đạt
25 tháng 10 2016 lúc 12:06

\(\frac{a}{a'}+\frac{b}{b'}=1;\frac{b}{b'}+\frac{c}{c'}=1\)

=> a/a'=c/c'

Huỳnh Kim Nhật Thanh
Xem chi tiết

Ta có: 
1/(1+a)+1/(1+b)+1/(1+c)≥2 
→1/(1+a)≥{1-1/(1+b)}+{1-1/(1+c)} 
↔1/(1+a)≥b/(1+b)+c/(1+c) 
≥2.√(bc)/{(1+b)(1+c)}(theo cosi) 
Hai bất đẳng thức tương tự rồi nhân vế với vế 
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1... 
↔abc≤1/8(dpcm)

TK NHA

Nguyễn Quốc Gia Huy
19 tháng 8 2017 lúc 9:36

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\)\(=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự ta có: 

Nguyễn Quốc Gia Huy
19 tháng 8 2017 lúc 9:40

\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}};\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\). Suy ra:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\Rightarrow abc\le\frac{1}{8}.\)

Bùi Nhật Vy
Xem chi tiết
ST
10 tháng 8 2018 lúc 20:27

Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi

Ta có: a+b+c=0 => a+b=-c

=>(a+b)2=(-c)2

=>a2+2ab+b2=c2

=>a2+b2-c2=-2ab

Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca

=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)

Doraemon
31 tháng 8 2018 lúc 9:48

Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.

Ta có: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)

\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)