\(\frac{a}{a'}+\frac{b}{b'}=1;\frac{b}{b'}+\frac{c}{c'}=1\)
=> a/a'=c/c'
\(\frac{a}{a'}+\frac{b}{b'}=1;\frac{b}{b'}+\frac{c}{c'}=1\)
=> a/a'=c/c'
Cau 1 :
Cho 1/c = 1/2(1/a+1/b) (với a,b,c khác 0 ; b khác c ) chứng minh rằng a/b=a-c/c-b
1, Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}\) = \(\dfrac{a-b+c}{a-b-c}\) trong đó b \(\ne\) 0. Chứng minh rằng c=0
Cho a,b,c là các số hữu tỉ khác 0 và a+b+c khác 0 sao cho a+b-c/c=a-b+c/b=-a+b+c/a. Chứng minh rằng a=b=c. Hicc ai giúp mình vớii mai mình thi r:((
Bài 1:Cho a/a' + b'/b =1
b/b' +c'/c =1
CMR: a.b.c và a'.b'.c' là 2 số đối nhau.
Bài 2: Cho b.z-c.y/a = c.x-a.z/b = a.y-b.x/c
CM: x/a = y/b = z/c
Bài 3: Cho a,b,c theo a2+b2+c2 khác 0
a.b/a+b = c.c/b+c = c.a/c+a
Tính: P = a.b2+b.c2+c.a2/a3+b3+c3
Cho a, b, c \(\in\) R và a, b, c \(\ne\) 0 thỏa mãn b2 = ac. Chứng minh rằng :
\(\dfrac{a}{c}=\dfrac{\left(a+2011b\right)^2}{\left(b+2011c\right)^2}\) (Biết rằng các tỉ số đều có nghĩa)
Cho đa thức Q(x)=ax^2+bx+c
a) biết 5a+b+2c=0 . Chứng tỏ rằng Q(x).Q(-1) < hoặc = 0
b) biết Q(x)=0 với mọi x . Chứng tỏ rằng a=b=c=0
chứng minh rằng ,nếu \(\frac{a+b}{c+a}=\frac{b+c}{d+a}\)trong đó a,b,c,d khác 0 thì a=c
Cho đa thức f(x) = ax2 + bx + c (với a,b,c là hằng số). Chứng minh rằng:
a) Nếu a + b + c = 0 thì đa thức f(x) có 1 nghiệm là x = 1.
b) Nếu a - b + c = 0 thì đa thức f(x) có 1 nghiệm là x = -1.
Chứng minh rằng từ tỉ lệ thức a/b = c/d (a-b # 0, c- d# 0) ta có thể suy ra tỉ lệ thức:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)