bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.
bạn nào giúp mùnh với! Chiều nay mình phải nộp rồi.
Cho biểu thức A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)Cho a+b+c = 1 .
Hãy tìm giá trị nhỏ nhất của A
Cho biểu thức A=(a2-ab+1+b2)xa+bx(b2-ab+1+a2)-(a3+b3)
tính giá trị A biết a=542, b=458
tất cả a2 b2 a3 b3 đều là a mũ 2 hoặc b mũ 2 hoặc b mũ 3 hoặc a mũ 3
cho a,b,c là các số hữu tỉ khác 0 sao cho: a+b-c/c=c+a-b/b=b+c-a/a
tính giá trị biểu thức A=(1+a/b)(1+b/c)(1+c/a)
1 . Cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . trong đó : m= a+c/2 ; n= b+d/2. biết x = y. hãy so sánh x với z;y ?
2 . cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . biết ad-bc=1; cn-dm = 1 ; b,d,n >0
a ) So sánh các số x,y,z
b ) Cho t = a+m /b+n (b+n khác 0 ). So sánh y với t
3. Cho 6 số nguyên dương a<b<c<d<m<n . Chứng minh rằng a+c+m /a+b+c+d+m+n
cho \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\) Tính \(\frac{x}{y}\)
cho \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) tính \(M=\frac{\left(a+b\right).\left(a+c\right).\left(b+c\right)}{a.b.c}\)
Tìm x \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Bài 1 a.2x + 1 / 5 = y - 2 / 7 = 2x + 3y - 1 / 6x
b. 12x - 15y/ 7 = 202 - 12y / 9 = 15y - 202 / 11 và x + y + 2 = 48
c. 1+4y / 13= 1+ 6y / 19 = 1+ 8y/ 5x
B2
Cho a/b = b/c = c/d . Chứng minh rằng \(\frac{a+b+c^3}{b+c+d^{ }}_{_{ }3}\) = a/d
Mấy bạn giải cặn kẽ để mk hiểu nhé. Đừng cho đáp án ngay
Cho các số a, b, c, x, y, z thoả mãn a+b+c=a2+b2+c2=1 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).
CMR: ( x + y + z )2 = x2 + y2 + z2.
CMR: Nếu a.(y + z) = b.(x + z) = c.(x + y)
trong đó a;b;c là các số khác nhau và khác 0 thì
\(\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\)
Baì 1: Tìm số tự nhiên n biết: \(3^{-1}.3^n+4.3^n=13.3^5\)
Bài 2: a) Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
Tính giá trị của Q= \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
b) Cho M= \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) với x, y, z, t là các số tự nhiên khac 0. Chứng minh rằng:
\(M^{10}< 1025\)