CM BĐT: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) với \(ab\ge1\)
Cm: với \(ab\ge1\) thì \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Ta có :
\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)⇒\(\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)
\(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)\(\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+b^2\right)\left(1+a^2\right)\left(1+ab\right)}\ge0\).vì ab≥0 nên sua ra đpcm
Cho các số thực dương thoả mãn:
\(\dfrac{1}{a+2}\) + \(\dfrac{1}{b+2}\)+ \(\dfrac{1}{c+2}\)\(\ge1\). CMR: \(a+b+c\ge ab+bc+ca\)
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\). Chứng minh rằng:
a+b+c\(\ge\)ab+bc+ca
\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)
\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
Cho hai số a,b thỏa mãn \(ab\ge1\)
Chứng minh rằng:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Dùng phương pháp biến đổi tương đương nhé!!!
Ta có : \(\dfrac{1}{1+a^2}\) + \(\dfrac{1}{1+b^2}\) \(\ge\) \(\dfrac{2}{1+ab}\)
<=>( \(\dfrac{1}{1+a^2}\) - \(\dfrac{1}{1+ab}\) ) + ( \(\dfrac{1}{1+b^2}\) - \(\dfrac{1}{1+ab}\) ) \(\ge\) 0
<=> \(\dfrac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0
<=> \(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0
<=> \(\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0
<=> \(a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\) \(\ge\) 0
<=> \(\left(b-a\right)\left(a+ab^2-b-a^2b\right)\) \(\ge\) 0
<=> \(\left(b-a\right)\left[ab\left(b-a\right)-\left(b-a\right)\right]\) \(\ge\) 0
<=> \(\left(b-a\right)\left(b-a\right)\left(ab-1\right)\) \(\ge\) 0
<=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0 (1)
Mà \(\left\{{}\begin{matrix}\left(b-a\right)^2\ge0\\ab-1\ge0\end{matrix}\right.\) ( vì ab \(\ge\)1)
=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0
=> (1) luôn đúng
Vậy đpcm ....
Ta có: \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
\(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
BĐT cuối cùng đúng vì \(a.b\ge1\Rightarrowđpcm\)
\(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{2\sqrt{2}}{\sqrt{c}}\ge\dfrac{8}{a+b+c}\)
cm BĐT
Thay \(a=b=c=0,25\)thì ta có:
\(\dfrac{1}{\sqrt{0,25}}+\dfrac{1}{\sqrt{0,25}}+\dfrac{2\sqrt{2}}{\sqrt{0,25}}\approx9,657\)
\(\dfrac{8}{0,25+0,25+0,25}\approx10,667\)
Vậy đề sai
Đặt [LATEX]A= \dfrac{2}{a^2+b^2}+ \dfrac{35}{ab}+2ab[/LATEX].
Áp dụng BĐT dạng [LATEX]\frac 1x+ \frac 1y \ge \frac{4}{x+y} \; \; x,y>0[/LATEX] ta có
[LATEX]\dfrac{4}{2(a^2+b^2)}+ \dfrac{4}{4ab} \ge \dfrac{4^2}{2(a+b)^2} \ge \frac 12 \qquad (1)[/LATEX].
Áp dụng BĐT AM-GM ta có
[LATEX]2ab+ \dfrac{32}{ab} \ge 16 \qquad (2)[/LATEX].
Cuối cùng
[LATEX]\dfrac{2}{ab} \ge \frac 12 \qquad (3)[/LATEX].
Cộng [LATEX](1)+(2)+(3)[/LATEX] ta thu được [LATEX]A \ge 17[/LATEX].
Dấu đẳng thức xảy ra khi và chỉ khi [LATEX]a=b=2[/LATEX].
a, Cho a,b > 0 . CMR :\(\dfrac{1}{1+a^2}\)+ \(\dfrac{1}{1+b^2}\) \(\ge\)\(\dfrac{2}{1+ab}\) nếu ab \(\ge\)1
b, Cho a,b,c \(\ge1\). CMR : \(\dfrac{1}{1+a^4}\) + \(\dfrac{1}{1+b^4}\) + \(\dfrac{1}{1+c^4}\) \(\ge\)\(\dfrac{1}{1+ab^3}\) + \(\dfrac{1}{1+bc^3}\) + \(\dfrac{1}{1+ca^3}\)
Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
Cho a,b,c là 3 số thức dương thỏa mãn a + b + c = 1/a + 1/b + 1/c . CMR
2( a + b + c) \(\ge\) \(\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\)
Giải:
Dễ thấy bđt cần cm tương đương với mỗi bđt trong dãy sau:
\(\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\ge0\),
\(\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\),
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge0\)
Các bđt trên đầu mang tính đối xứng giữa các biến nên k mất tính tổng quát ta có thể giả sử \(a\ge b\ge c\)
=> \(\dfrac{a^2-1}{a}\ge\dfrac{b^2-1}{b}\ge\dfrac{c^2-1}{c}\)
và \(\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{b^2}}}\ge\dfrac{1}{2+\sqrt{1+\dfrac{3}{c^2}}}\)
Áp dụng bđt Chebyshev có:
\(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge\dfrac{1}{3}\left(\sum\dfrac{a^2-1}{a}\right)\left(\sum\dfrac{1}{2+\sqrt{1+\dfrac{3}{a^2}}}\right)\)
Theo gia thiết lại có: \(\sum\dfrac{a^2-1}{a}=\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
nên ta có thể suy ra \(\dfrac{\dfrac{a^2-1}{a}}{2+\sqrt{1+\dfrac{3}{a^2}}}+\dfrac{\dfrac{b^2-1}{b}}{2+\sqrt{1+\dfrac{3}{b^2}}}+\dfrac{\dfrac{c^2-1}{c}}{2+\sqrt{1+\dfrac{3}{c^2}}}\ge0\)
Vì vậy bđt đã cho ban đầu cũng đúng.
@Ace Legona
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
giúp cái CM BĐT; \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)với \(ab\ge1\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{ab+1}\)
\(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{ab+1}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\frac{ab-a^2}{\left(1+a^2\right)\left(ab+1\right)}+\frac{ab-b^2}{\left(1+b^2\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{a\left(b-a\right)}{\left(1+a^2\right)\left(ab+1\right)}+\frac{b\left(a-b\right)}{\left(1+b^2\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)}{ab+1}\left(\frac{b}{1+b^2}-\frac{a}{1+a^2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{ab+1}.\frac{b+ba^2-a-ab^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)
\(\Leftrightarrow\frac{a-b}{ab+1}.\frac{ab\left(a-b\right)-\left(a-b\right)}{\left(1+a^2\right)\left(1+b^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(ab+1\right)\left(1+a^2\right)\left(1+b^2\right)}\ge0\)
Vì \(ab\ge1\) nên BĐT trên luôn đúng.
Vậy bđt ban đầu dc chứng minh .