1.Tính nhanh
a, A=8,95*90+89+50%
Bài 1: Tính nhanh
A=99-97+95-93+91-89+........+7-5+8-1
Lời giải:
$A=(99-97)+(95-93)+(91-89)+...+(7-5)+(8-1)$
$=\underbrace{2+2+2+...+2}_{24}+7$
$=2\times 24+7$
$=55$
Tính nhanh
a) 72. (-50).(-2).(-2)
b) 125.(-5).(-20).8
\(a,=72\cdot\left(-200\right)=-14400\\ b,=\left(125\cdot8\right)\left[\left(-5\right)\left(-20\right)\right]=1000\cdot100=1000000\)
a)72.(-50).(-2).(-2)
= 72.[(-50).(-2)].(-2)
= 72. 100.(-2)
=7200.(-2)=-14400
b)=125.(-5).(-20).8
=(125.8).[(-5).(-20)]
=1000.100=100000
\(B=C_{90}^0+2C_{90}^1+2^2C^2_{90}+....+2^{89}C_{90}^{89}+2^{90}C_{90}^{90}\) Tính B
Xét khai triển:
\(\left(1+x\right)^{90}=C_{90}^0+C_{90}^1x+C_{90}^2x^2+...+C_{90}^{90}x^{90}\)
Thay \(x=2\) ta được:
\(3^{90}=C_{90}^0+2C_{90}^1+2^2C_{90}^2+...+2^{90}C_{90}^{90}\)
Vậy \(B=3^{90}\)
Tính \(A=2^2C^2_{90}+2^3\cdot C_{90}^3+.....+2^{89}\cdot C_{90}^{^{89}}+2^{90}\cdot C_{90}^{90}\)
\(X=\left(a+b\right)^n=\sum\limits^n_{k=0}C^k_n.a^k.b^{n-k}\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(\Rightarrow A=\sum\limits^{90}_{k=2}C^k_{90}.2^k=...\)
Hoặc có thể làm như vầy: \(A=X-C^0_{90}.2^0-C^1_{90}.2=3^{90}-1-90.2=...\)
Tính nhanh
a/ 77 X 27 + 9 X 24 + 15 X 27
b/ 75 X 89 + 25 X 27 + 2 X 75
c/ 0,25 X 42,9 – 11,7 X 0,25 + 0,25 X 0,8
d/ 738 phút = ...... giờ
e/ 32 giờ 6 phút = ..... ngày....giờ.....phút
a: \(=27\left(77+15\right)+27\cdot8\)
\(=27\cdot92+27\cdot8=27\cdot100=2700\)
b: \(=75\cdot89+75\cdot9+2\cdot75=75\left(89+9+2\right)=75\cdot100=7500\)
c: \(=0.25\left(42.9-11.7+0.8\right)=0.25\cdot32=8\)
d: 738 phút=12,3 giờ
Tính nhanh
a) 72. (-50).(-2).(-2)
b) 125.(-5).(-20).8
c) 125.(-3).(-32).(-4)
d) (-123 – 123-123-123).125
a)=\(\left[72.\left(-2\right)\right].\left[-50.\left(-2\right)\right]\)
=-144.100
=-14400
b)=(125.8).(-5).(-20)
=1000.100
=100000
c)=\(\left[125.\left(-4\right)\right]\).(-3).(-32)
=-500.96
=-48000
d)=-492.125
=-60500
bài 1 : 101 x 125 + 101 x 25 - 101 x 50
bài 2 : 76 x 115 + 56 x 24 + 59 x 24
bài 3 : thực hiện phép tính : a ) 90-84+ 8 - 72 +66-60+54-48
b ) 99-97+95-93+91-89+.........+7-5+3-1
bài 4 : tìm số tự nhiên x biết :
a) \(x\) x 16 -\(x\) x 9 = 56
bài 5 :tìm số tự nhiên x , biết
a) \(x\) + 2 x \(x\) +3 x \(x\)+4 x \(x\) +5 x \(x\) = 165
b ) 1+2+3+4+.....+\(x\)=55
GIẢI GIÚP E Ạ
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
5:
a: =>15x=165
=>x=11
b: =>x(x+1)/2=55
=>x^2+x=110
=>x=10
4: =>7x=56
=>x=8
Bài 1:
101•125+101•25+101•50
= 101•(125+25-50)
=101•100
=10100
Bài 2:
76•115+56•24+59•24
= 76•115+24•(56+59)
= 76•115+24•115
= 115•(76+24)
= 115•100
= 11500
Tính : A=1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90
A = (1 -1/2) + (1 - 1/6) + (1 - 1/12) + (1 - 1/20 ) + ...+ (1 - 1/ 90)
= (1+1+1+1+1+1+1+1+1) - ( 1/2 - 1/6 - 1/12 - 1/ 20 - ...- 1/90)\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)\(=9-\left(1-\frac{1}{10}\right)=\frac{81}{10}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
Tính: A=1/2+5 /6+11/2+19/20+29/30+41/42+55/56+71/72+89/90
\(9-A=1-\frac{1}{2}+1-\frac{5}{6}+1-\frac{11}{12}+1-\frac{19}{20}+...+1-\frac{89}{90}\)
\(\Leftrightarrow9-A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
\(\Leftrightarrow9-A=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{10-9}{9\cdot10}\)
\(\Leftrightarrow9-A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(\Leftrightarrow A=9-\frac{9}{10}=\frac{81}{10}\)