cho đa thức p(x)= 2x⁴+3x²+1 a) Tính P(0); P(1); P(-2) b) Chứng tỏ rằng P(a)>0 với mọi a thuộc R
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
Cho 2 đa thức: P(x)=3x^2+7+2x^4-3x^2-4-5x+2x^3 và Q(x)=3x^3+2x^2-x^4+x+x^3+4x-2+5x^4 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến. b) Tính P(-1) và Q(0) c) Tính G(x) = P(x) + Q(x) d) Chứng tỏ rằng đa thức G(x) luôn dương với mọi giá trị của x
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
bài 1
a) tìm nghiệm của đa thức 2x2 +3x
b) cho A(x)= 2x2 - 2x - 24 ; B(x)=2x2 +3x - 29
Tìm x sao cho A (x)=B(x)
bài2
Tính giá trị của đa thức B=12x2 +20x + 1 biết x thỏa mãn 3x2 +5x - 2 =0
a) Ta có : 2x2 + 3x = 0
<=> x(2x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{2}\end{cases}}\)
Câu 8 :
a , Thu gọn và chỉ ra bậc của đơn thức A=1/2x^3 * 8/5x^2
b , Cho đa thức P(x)=x^2-5x+6
Tính P(0) và P(2)
Câu 9 : Cho 2 đa thức A(x) =5x^3+x^2-3x+5 và B(x)=5x^3+x^2+2x-3
a , Tính A(x)+B(x)
b, Tìm nghiệm của đa thức H(x)= A(x)-B(x) ( giúp vs)
\(Câu8\)
\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)
b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)
Câu 9
\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)
\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)
\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)
vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)
cho 2 đa thức P(x)=-2x^2+3x^4+x^3+x^2 - 1/4x Q(x)=3x^4+3x^2 - 1/4 - 4x^3 - 2x^2 a)sắp xếp các hạng tử của mỗi đa thức sau theo luỹ thừa giảm dần của biến b) tính p(x)+Q(x) và P(x) - Q(x) c) chứng tỏ x=0 là nghiệm của đa thức P(x) nhưng không là nghiệm của Q(x)
Cho đa thức
M(x)=2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1
a,Thu gọn M(x)
b,Tính giá trị của M(x) tại x=0; x= -1,x=1/3
c,Tìm x để P(x)=0 ;P(x)=1
Bài 8: Cho đa thức: P(x)= \(2x^4+3x^2+4\)
a) Tính P(0), P(1); P(-1),P(2); P(-2); P(\(\dfrac{-2}{3}\))
a: \(P\left(0\right)=2\cdot0^4+3\cdot0^2+4=4\)
\(P\left(1\right)=2\cdot1^4+3\cdot1^2+4=2+3+4=9\)
\(P\left(-1\right)=2\cdot\left(-1\right)^4+3\cdot\left(-1\right)^2+4=9\)
\(P\left(2\right)=2\cdot2^4+3\cdot2^2+4=32+18+4=54\)
\(P\left(-2\right)=2\cdot\left(-2\right)^4+3\cdot\left(-2\right)^2+4=54\)
`P(0)=2.0^4+3.0^2+4=0+0+4=4`
`P(1)=2.1^4+3.1^2+4=2+3+4=9`
`P(-1)=2.(-1)^4+3.(-1)^2+4=2+3+4=9`
`P(2)=2.2^4+3.2^2+4=32+12+4=48`
`P(-2)=2.(-2)^4+3.(-2)^2+4=32+12+4=48`
`P([-2]/3)=2.([-2]/3)^4+3.([-2]/3)^2+4=32/81+4/3+4=464/81`
Bài 4: Cho đa thức:
P(x)= 2x³ + x² +5 -3x + 3x²- 2x³ - 4x² + 1
a) Thu gọn P(x)
b) Tìm x để P(x) =0; P(x) =1
`a)` P(x)= 2x³ + x² +5 -3x + 3x²- 2x³ - 4x² + 1
`P(x) = (2x^3 -2x^3) + (x^2 +3x^2 -4x^2)-3x +(1+5)`
`P(x) = -3x +6`
Vậy `P(x) = -3x +6`
b) cho `P(x) = 0`
`<=> -3x+6 =0`
`-3x =-6`
`=> x =2`
cho P(x) =1
`=> -3x +6 =1`
`<=> -3x =-5`
`x =5/3`
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0