chứng tỏ p/số 15n+1/ 30n+1 là p/số tối giản
giúp mk vs nhiều bài quá
chứng tỏ rằng với các số nguyên n, các phân số sau là phân số tối giản
a) 15n + 1/ 30n + 1
b) 2n + 3/ 4n + 8
a) Đặt ( 15n+1 ; 30n+1 )=d
=>15n+1 chia hết cho d =>30n+2 chia hết cho d
30n+2 chia hết cho d
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>15n+1 và 30n+1 nguyên tố cùng nhau
=>\(\frac{15n+1}{30n+1}\) tối giản
b)Đặt ( 2n+3;4n+8)=d
=>2n+3 chia hết cho d=>4n+6 chia hết cho d
4n+8 chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d= 1 hoặc 2
Mà 2n+3 là số lẻ
=>d khác 2
=>d=1
=>2n+3 và 4n+8 nguyên tố cùng nhau
=>\(\frac{2n+3}{4n+8}\) tối giản
k cho mk nhé
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a) \(\dfrac{5n+3}{3n+2}\)
b) \(\dfrac{15n+1}{30n+1}\)
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
Chứng tỏ với mọi số nguyên n , các phân số sau là phân số tối giản:
1) \(\frac{15n+1}{30n+1}\)
( Mk cần gấp)
Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc Z*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc Z*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc Z (điều phải chứng minh)
Đặt (15n+1,30n+1) =d
\(\Rightarrow\left\{{}\begin{matrix}15n+1⋮d\\30n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}30n+2⋮d\\30n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\)(30n+2) \(-\)(30n+1)
=1\(⋮\)d nên d=1 (đpcm)
Vậy \(\dfrac{15n+1}{30n+1}\) là phân số tối giản
Gọi: d=(15n+1,30n+1)
Ta có: 15n+1 chia hết cho d và 30n+1 chia hết cho d
=> 2(15n+1) chia hết cho d và 30n+1 chia hết cho d
=> 30n+2 chia hết cho d và 30n+1 chia hết cho d
=> (30n+2)-(30n+1) chia hết cho d
=>1 chia hết cho d=>d=1. Vậy: phân số: (15n+1)/(30n+1) là phân số tối giản
Chứng tỏ rằng các phân số sau đây là phân số tối giản
a,5n+3/3a+2
b,15n+1/30n+1(mọi n ϵ N)
Toán lớp 6 đó các bạn
Giải nhanh giùm mình nhé!
dễ ẹc đưa 500 nghìn đồng cho tớ đi tớ giải cho
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a)15n+1/30n+1
b)n^3+2n/n^4+3n^2+1
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
chứng tỏ rằng:
a) 15n+1/ 30n+1 là phân số tối giản (n thuộc Z )
b) n3+2n/n4+3n2+1 là phân số tối giản ( n thuộc Z )
Chứng tỏ rằng với mọi số nguyên n, các phân số sau tối giản:
a) 15n+1/30n+1. ; b) 12n+1/30n+2. ; c)8n+5/6n+4 ; d)2n+3/4n+8
a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:
15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d
30n+1 chia hết cho d
=> 30n+2-(30n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(15n+1; 30n+1) = 1
=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)
Các phần sau tương tự
Chứng tỏ rằng:
a) 15n+1/30n+1 là phân số (n thuoc Z)
b) n^3+2n/n^4+3n^2+1 là phân số tối giản(n thuộc Z)
Ai nhanh có thưởng đó nha
a ) Gọi d là ƯC ( 15n + 1 ; 30n + 1 )
=> 15n + 1 ⋮ d => 2.( 15n + 1 ) ⋮ d => 30n + 2 ⋮ d
=> 30n + 1 ⋮ d => 1.( 30n + 1 ) ⋮ d => 30n + 1 ⋮ d
=> [ ( 30n + 2 ) - ( 30n + 1 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 15n + 1 ; 30n + 1 ) = 1 nên 15n+1/30n+1 là p/s tối giản
a)Gọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*)
=> 15n + 1 chia hết cho d
30n + 1 chia hết cho d
=> 2(15n + 1) chia hết cho d
1(30n + 1) chia hết cho d
=> 30n + 2 chia hết cho d
30n + 1 chia hết cho d
=>(30n + 2) - (30n + 1) chia hết cho d
=> 1 chia hết cho d
Do d thuộc N*
=> d=1
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh)
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi
Gọi (n^3+2n ; n^4 +3n^2+1) là d \(\Rightarrow\) n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d
\(\Rightarrow\) n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d
Do đó : (n^4+3n^2+1)-(n^4+2n^2) chia hết cho d hay n^2+1 chia hết cho d (1 )
\(\Rightarrow\) (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d
\(\Rightarrow\) (n^4+3n^2+1) - (n^4+2n^2+1) chia hết cho d hay n^2 chia hết cho d (2)
Từ (1) và (2) \(\Rightarrow\) (n^2+1)-n^2 chia hết cho d hay 1 chia hết cho d
Do đó : (n^3+2n ; n^4+3n^2+1 ) = 1 hoặc -1 \(\Rightarrow\) \(y=\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tồi giản (Đ.P.C.M)
Chứng tỏ mọi n thuộc Z, các phân số sau tối giản:
a.15n+1/30n+1 b.18n+3/21n+7
a)
Gọi d là ước chung của 15n + 1 và 30n + 1 \(\left(d\in N\right)\)
\(\Rightarrow\left\{{}\begin{matrix}15n+1⋮d\Rightarrow2\left(15n+1\right)⋮d\Rightarrow30n+2⋮d\\30n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left(30n+2\right)-\left(30n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)15n + 1 và 30n + 1 nguyên tố cùng nhau
\(\Rightarrow\dfrac{15n+1}{30n+1}\) tối giản