Rút gọn A
A=\(\left(\dfrac{1}{x+1}-\dfrac{1}{x^2-1}\right)\cdot\dfrac{x+1}{x-2}\)
Rút gọn A
A = \(\dfrac{x^2}{x^2-1}-\dfrac{2x+1}{1-x^2}-\dfrac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x-1}\)
\(=\dfrac{x+1-1}{x-1}=\dfrac{x}{x-1}\)
P=\(\left(\dfrac{3\left(x+2\right)}{2x^2+8}-\dfrac{2x^2-x-10}{\left(x+1\right)\left[\left(x+1\right)^2-2x\right]}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{x-1}\right)\cdot\dfrac{2}{x-1}\)
a) rút gọn P
b)tìm tất cả các giá trị nguyên của x để P có giá trị là bội của 4
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
rút gọn A
A = \(\left(\dfrac{2}{x-\sqrt{x}}+\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{2\sqrt{x}-x}\)
\(ĐK:x>0;x\ne1\\ A=\dfrac{2+x-1-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\\ A=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}=\dfrac{\left(1-\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\)
\(A=\left(\dfrac{2+x-1-x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}+1}\)
\(=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Câu 1:
\(C=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}-\dfrac{1}{4-x^2}\right)\)
a) Rút gọn C
b) x bằng mấy để C = 1?
Câu 2:
\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Rút gọn B
b) x bằng mấy để \(\left|B\right|=B\)
Câu 3: Rút gọn:
\(A=\left[\dfrac{\left(1-a\right)^2}{3a+\left(a-1\right)^2}+\dfrac{2a^2-4a-1}{a^3-1}-\dfrac{1}{1-a}\right]:\dfrac{2a}{a^3+a}\)
Rút gọn:
\(A=1-\left[\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}+\dfrac{2x-1+\sqrt{x}}{1-x}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
\(B=\left[1:\frac{2x-1}{x-x^2}\right]\cdot\left[\frac{2x^3+x^2-x}{x^3-1}-2-\frac{1}{x-1}\right]\)
Rút gọn:
\(A=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
Rút gọn:
\(C=\left[\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{x^3+3x^2+3x+1}+\left(1+\dfrac{1}{x^2}\right)\cdot\dfrac{1}{1+2x+x^2}\right]:\dfrac{x-1}{x^3}\)
cho biểu thức A=\(\left(\dfrac{4x-9}{2\sqrt{x}-3}+\sqrt{x}\right)\cdot\dfrac{1}{x+2\sqrt{x}+1}\)
a)rút gọn
Rút gọn:
\(A=\dfrac{x}{5-x}+\left(\dfrac{x}{x^2-25}+\dfrac{5-x}{5x+x^2}\right):\dfrac{2x-5}{x^2+5x}\)
\(B=\left[\left(\dfrac{1}{x^2}+1\right)\cdot\dfrac{1}{1+2x+x^2}+\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{\left(1+x\right)^3}\right]:\dfrac{x-1}{x^3}\)