Sosánh: M= 5^2018+1/5^2017+1 và N=5^2017+1/5^2016+1
`M=(5^2018+1)/(5^2017+1)`
`1/5M=(5^2017+1/5)/(5^2017+1)`
`1/5M=1-(4/5)/(5^2017+1)`
Tương tự:
`1/5N=1-(4/5)/(5^2016+1)`
`5^2017+1>5^2016+1`
`=>(4/5)/(5^2017+1)<(4/5)/(5^2016+1)`
`=>1-(4/5)/(5^2017+1)>1-(4/5)/(5^2016+1)`
`=>1/5M>1/5N=>M>N`
\(M=\dfrac{5^{2018}+1}{5^{2017}+1}=5-\dfrac{4}{5^{2017}+1}\)
\(N=\dfrac{5^{2017}+1}{5^{2016}+1}=5-\dfrac{4}{5^{2016}+1}\)
mà \(-\dfrac{4}{5^{2017}+1}>-\dfrac{4}{5^{2016}+1}\)
nên M>N
So Sánh
M = \(\frac{2017^{2015}+1}{2017^{2015}-1}\)và N = \(\frac{2017^{2015}-5}{2017^{2015}-3}\)
Ta có: \(M=\frac{2017^{2015}+1}{2017^{2015}-1}=\frac{2017^{2015}-1+2}{2017^{2015}-1}=1+\frac{2}{2017^{2015}-1}\)
\(N=\frac{2017^{2015}-5}{2017^{2015}-3}=\frac{2017^{2015}-3-2}{2017^{2015}-3}=1-\frac{2}{2017^{2015}-3}\)
Vì \(\frac{2}{2017^{2015}-1}>-\frac{2}{2017^{2015}-3}\)nên M>N
Cảm ơn bạn nha Edogawa Conan và Nguyễn Đức Lương
So sánh M và N biết:
M=\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)
N=\(\frac{2014+2015+2016}{2015+2016+2017}\)
m=n m>n m<n 1 trong 3 chắc chắn đúng ahihi =)))
So sánh A= \(\frac{2015}{2015^m}\)+ \(\frac{2015}{2015^n}\) và B= \(\frac{2013}{2015^m}\)+\(\frac{2017}{2015^n}\) (m,n \(\in\)N*)
\(B=\frac{215-2}{2015^m}+\frac{2015+2}{2015^n}=\frac{2015}{2015^m}-\frac{2}{2015^m}+\frac{2015}{2015^n}+\frac{2}{2015^n}=A-2\left(\frac{1}{2015^m}-\frac{1}{2015^n}\right)\)
+ Nếu \(m>n\Rightarrow2015^m>2015^n\Rightarrow\frac{2}{2015^m}<\frac{2}{2015^n}\Rightarrow\frac{2}{2015^m}-\frac{2}{2015^n}<0\Rightarrow A-\left(\frac{2}{2015^m}-\frac{2}{2015^n}\right)>A\)
=> A<B
+ Nếu
m<n làm tương tự => A>B
Tìm x thỏa mãn:
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\Leftrightarrow\) \(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{x+4}{2015}+1+\frac{x+5}{2014}+1+\frac{x+6}{2013}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{x+2019}{2015}+\frac{x+2019}{2014}+\frac{x+2019}{2013}\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}-\frac{x+2019}{2015}-\frac{x+2019}{2014}-\frac{x+2019}{2013}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)\)\(=0\)
Lại có: \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\) \(\ne\) \(0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=0-2019=-2019\)
Vậy x= -2019
Bài 1: Tìm x biết: \(\frac{x+5}{2014}+\frac{x+4}{2015}=\frac{x+3}{2016}+\frac{x+2}{2017}\)
Bài 2: Tìm cặp số nguyên (x;y) thoả mãn: \(\left|5x\right|+\left|2y+3\right|=7\)
So sánh \(A=\frac{2016}{a^m}+\frac{2016}{a^n}vaB=\frac{2017}{a^m}\frac{2015}{a^n}\)
1a, Cho phân số \(\frac{7}{5}.Sosánh\)\(\frac{7}{5}\)và \(\frac{7+4}{5+4}\)
b, Cho phân số \(\frac{a}{b}\)(a,b \(\in\)N ; a>b ) và m>0 . So sánh \(\frac{a}{b}\) và \(\frac{a+m}{b+m}\)
c, Hãy phát biểu tính chất ở câu b
d, Áp dụng so sánh \(\frac{1074}{1071}\)và \(\frac{1075}{1072}\)
MỌI NGƯỜI GIÚP MÌNH CÁI NHÉ !!!
1a,7/5>7+4/5+4
d, 1074/1071>1074+1/1071+1=1075/1072
suy ra 1074/1071>1075/1072
( các câu còn lại mk k hiểu )
mình ghi nhầm đề , mình bổ sung rồi đó , bạn xem thử ik