Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Thi Thu Giang
Xem chi tiết
Hoang Thi Thu Giang
16 tháng 11 2016 lúc 19:29

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

thành piccolo
Xem chi tiết
Nakamori Aoko
Xem chi tiết
Trần gia linh
Xem chi tiết
Nhật Thiên
23 tháng 9 2017 lúc 18:36

a) Ta thấy cứ 2 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 nên tích của chúng phải chia hết cho 2 

b) Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2) 

-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp 

+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2

+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2 

-Chứng minh T chia hết cho 3: Có 3 trường hợp

+Nếu a chia hết cho 3 => T chia hết cho 3 

+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3

+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3 

2 và 3 nguyên tố cùng nhau

=> T chia hết cho 2.3 = 6 

Không Tên
13 tháng 10 2018 lúc 19:16

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

Nếu:  a = 2k thì chia hết cho 2  Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

ILoveMath
Xem chi tiết
Tuệ Nhân Mai
Xem chi tiết
Akai Haruma
6 tháng 7 lúc 22:46

Lời giải:
a.

$A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

b.

Hiển nhiên các số hạng của $A$ đều chẵn nên $A\vdots 2(1)$

Mặt khác:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{97}+2^{98}+2^{99}+2^{100})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{97}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{97})=15(2+2^5+...+2^{97})\vdots 15(2)$

Từ $(1); (2)$ mà $(2,15)=1$ nên $A\vdots (2.15)$ hay $A\vdots 30$

Akai Haruma
6 tháng 7 lúc 22:47

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{98}+2^{99}+2^{100})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{98}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+...+2^{98})$

$=2+7(2^2+2^5+...+2^{98})$

$\Rightarrow A$ không chia hết cho 7

$\Rightarrow A$ không chia hết cho 14.

I love dễ thương
Xem chi tiết
Nguyễn Thị Phương Anh
Xem chi tiết
soyeon_Tiểu bàng giải
9 tháng 7 2016 lúc 15:28

1) B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)

B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)

B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)

B = 3^3.13 + 3^6.13 + ... + 3^60.13

B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13

=> số dư khi chia B cho 13 là 0

2) Do 4a + 3b chia hết cho 7

=> 2.(4a + 3b) chia hết cho 7

=> 8a + 6b chia hết cho 7

=> 7a + a + 7b - b chia hết cho 7

Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7

Ủng hộ mk nha ☆_☆★_★^_-

Nguyễn Xuân Sáng
9 tháng 7 2016 lúc 20:26

B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)

B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)

B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)

B = 3^3.13 + 3^6.13 + ... + 3^60.13

B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13

=> số dư khi chia B cho 13 là 0

2) Do 4a + 3b chia hết cho 7

=> 2.(4a + 3b) chia hết cho 7

=> 8a + 6b chia hết cho 7

=> 7a + a + 7b - b chia hết cho 7

Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7

phạm ngọc mai
Xem chi tiết
Trần Thị Diệu Vi
18 tháng 11 2017 lúc 13:46

a) Ta có : A = \(x^3-x\)

          => A = \(x^2.x-x\)

          => A = \(x\left(x^2-1\right)\) 

Xét :

TH1 : \(x\) là số chẵn => \(x\)chia hết cho \(2\) => \(x\left(x^2-1\right)\)chia hết cho \(2\) ( thỏa mãn )

TH2 : \(x\)là số lẻ => \(x^2\)là số lẻ  =>  \(x^2-1\)là số chẵn, chia hết cho 2 => \(x\left(x^2-1\right)\)chia hết cho \(2\)(thỏa mãn )

Qua 2 TH ta đều thấy \(x^3-x\)chia hết cho \(2\)

Vậy A chia hết cho 2.

Nhớ k nha Mai best friend !