Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Muichirou Tokitou
Xem chi tiết
Yeutoanhoc
21 tháng 5 2021 lúc 10:17

`M(x)=P(x)+Q(x)`

`=x^4-5x+2x^2+1+5x+x^2+5-3x^2+x^4`

`=2x^4+6`

Đặt `M(x)=0`

`<=>2x^4+6=0`

`<=>x^4=-3`(vô lý vì `x^4>=0`)

Muichirou Tokitou
Xem chi tiết
ʚƘεŋşɦїŋ ℌїɱʉɾαɞ‏
22 tháng 5 2021 lúc 9:46

a) Ta có M(x)=P(x)+Q(x)

                     =(\(x^4-5x+2x^2+1\))+(\(5x+x^2+5-3x^2+x^4\))

                     =\(x^4-5x+2x^2+1\)+\(5x+x^2+5-3x^2+x^4\)

                     =(\(x^4+x^4\))+(-5x+5x)+(\(2x^2\)+\(x^2\)-\(3x^2\))+(1+5)

                     =\(2x^4\)+6

Vậy M(x)=\(2x^4+6\)

b)Vì 2x\(^4\)\(\ge\) 0 với \(\forall\) x

  nên \(2x^4+6\)  \(\ge\)0 với \(\forall\)x

\(\Rightarrow\)M(x) \(\ge\) 0 với \(\forall\) x

Vậy M(x) vô nghiệm

Lu NcTho
Xem chi tiết
ST
17 tháng 6 2017 lúc 12:35

a) M(x) = (x4 - 5x + 2x2) + (5x + x2 + 5 - 3x2 + x4)

M(x) = x4 - 5x + 2x2 + 5x + x2 + 5 - 3x2 + x4

M(x) = 2x4 + 6

b) Ta thấy 2x4 \(\ge\) 0 \(\forall x\)

=> 2x4 + 6 \(\ge\)6 > 0 \(\forall x\)

Vậy M(x) vô nghiệm

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 9 2018 lúc 5:49

c. Thay x = -1 vào A(x) và B(x) ta có:

A(-1) = 0, B(-1) = 2

Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)

Vũ Đức Khải
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2017 lúc 2:17

Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C

Do Bao Nam
15 tháng 4 lúc 20:09

x=1/4 chon C

 

ᴗ네일 히트 야옹 k98ᴗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2022 lúc 14:53

a: \(=6x^3-10x^2+6x\)

b: \(=-2x^4-10x^3+6x^2\)

c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)

d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)

Doraemon N.W
Xem chi tiết
Minh Lệ
4 tháng 5 2023 lúc 12:52

\(P\left(x\right)+Q\left(x\right)=3x^2-3x+5-2x^2+5x-6\\ =\left(3x^2-2x^2\right)+\left(5x-3x\right)+\left(5-6\right)\\ =x^2+2x-1\)

:D :D
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
27 tháng 6 2023 lúc 12:04

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2019 lúc 6:40

Ta có: P(x) + Q(x)

= 2x2 + 5x - 1 + (-2x2 -4x + 3) = x + 2

Cho x + 2 = 0 ⇒ x = -2. Chọn C