Cho a, b, c \(\in\)N*. So sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)
Cho a,b,c \(\in N\)*. Hãy so sánh:
\(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
\(a,b,n\in N\)*.So sánh \(\frac{a+n}{b+n}\)và\(\frac{a}{b}\)
* Nếu a<b
Ta có: \(\left(a+n\right)b=ab+bn\\ \left(b+n\right)a=ab+an\)
\(\Rightarrow\left(a+n\right)b>\left(b+n\right)a\)
\(\Rightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
*Nếu a>b
\(\Rightarrow\frac{a+n}{b+n}< \frac{a}{b}\)
a, Cho a,b,n \(\in\)N* Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b, Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)So sánh A và B
a, Cho a,b,n\(\in\)N*. Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
b, Cho \(A=\frac{10^{11}-1}{10^{12}-1}\); \(B=\frac{10^{10}+1}{10^{11}+1}\). So sánh A và B
b)A=10^11-1/10^12-1
=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B
Vậy A<B
\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b^2+bn}\)
\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b^2+bn}\)
2 phân thức cùng mẫu, ta so sánh tử số
+) TH1 : a > b => an > bn
=> \(\frac{a}{b}>\frac{a+n}{b+n}\)
+) TH2 : a < b => an < bn
=> \(\frac{a}{b}< \frac{a+n}{b+n}\)
+) TH3 : a = b => an = bn
=> \(\frac{a}{b}=\frac{a+n}{b+n}\)
Ta co: (a+n).b=a.b+n.b
(b+n).a=b.a+n.a
Xet tuong hop:
Th1: a>b
Voi a>b thi a.b+n.b<b.a+n.a
a+n/b+n<a/b
Th2:b>a
Voi b>a thi a.b+b.a>b.a+n.a
a+n/b+n>a/b
Xét \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{b\left(a+n\right)-a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+bn-ab-an}{b\left(b+n\right)}\)
\(=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}=\frac{n}{b\left(b+n\right)}.\left(b-a\right)\)
Nếu \(a\ge b\Rightarrow b-a\le0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}\le0\Rightarrow\frac{a+n}{b+n}\le\frac{a}{b}\)
Nếu \(a\le b\Rightarrow b-a\ge0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}\ge0\Rightarrow\frac{a+n}{b+n}\ge\frac{a}{b}\)
Vậy xảy ra 2 trường hợp:
\(\frac{a+n}{b+n}\le\frac{a}{b}\) (nếu \(a\ge b\) )
\(\frac{a+n}{b+n}\ge\frac{a}{b}\) (nếu \(a\le b\) )
Cho a,b,n\(\in\) N*. Hãy so sánh \(\frac{a+n}{b+n}và\frac{a}{b}\)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{n},\;\forall \;n\; \in {N^*}\)
a) So sánh \({u_n}\) và 1.
b) So sánh \({u_n}\) và 2.
a) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} > 1\).
b) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} < 2\).
a) Cho a , b , n \(\in\)N* Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b)Cho A = \(\frac{^{10^{11}}-1}{10^{12}-1}\); B=\(\frac{10^{10}+1}{10^{11}+1}\)So sánh A và B
mình làm được câu a thôi. bạn có bấm đúng k để mình làm cho
thôi mình làm hết cho
a) xét hiệu ta có: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{ab+bn-ab-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(b+n\right)}\)
với n,b, thuộc N => b(b+n) luôn >0
với n >0 => nếu b>a => b-a>0 <=> n(b-a) >0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a+n}{b+n}-\frac{a}{b}>0\Leftrightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
ngược lại nếu b<a => b-a<0 <=> n(b-a)<0 => \(\frac{n\left(b-a\right)}{b\left(b+n\right)}
Cho \(a,b\in N^#\)Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
Ta so sánh \(\frac{a+n}{b+n}\) và \(\frac{a}{b}\) trong 3 trường hợp
\(TH1:a=b\Leftrightarrow\frac{a}{b}=\frac{a+n}{b+n}=1\)
\(TH2:a>b\Leftrightarrow ab+an>ba+bn\Leftrightarrow\frac{a+n}{b+n}< \frac{a}{b}\)
\(TH2:a< b\Leftrightarrow ab+an< ba+bn\Leftrightarrow\frac{a+n}{b+n}>\frac{a}{b}\)
cho \(a,b,n\in N\)hãy so sánh \(\frac{a+n}{a+n}\)và \(\frac{a}{b}\)
làm 3 tường hợp nhé
Ta có :
\(\frac{a+n}{a+n}=1\)
TH1 : Nếu \(\frac{a}{b}=1\)
\(\Rightarrow\frac{a+n}{a+n}=\frac{a}{b}\)
TH2 : Nếu \(\frac{a}{b}< 1\)
\(\Rightarrow\frac{a+n}{a+n}>\frac{a}{b}\)
TH3 : Nếu \(\frac{a}{b}>1\)
\(\Rightarrow\frac{a+n}{a+n}< \frac{a}{b}\)
Ta có : \(\frac{a+n}{a+n}=1\)
Trường hợp 1 : Nếu \(\frac{a+n}{a+n}=1\)
\(\Rightarrow\frac{a+n}{a+n}=\frac{a}{b}\)
Trường hợp 2 : Nếu \(\frac{a+n}{a+n}>1\)
\(\Rightarrow\frac{a+n}{a+n}>\frac{a}{b}\)
Trường hợp 3 : Nếu \(\frac{a+n}{a+n}< 1\)
\(\Rightarrow\frac{a+n}{a+n}< \frac{a}{b}\)
Chúc bạn học tốt !