Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Trọng Chiến
6 tháng 3 2021 lúc 20:29

\(\Rightarrow A=2^{2n}-1=4^n-1=\left(4-1\right)\left(4^{n-1}+4^{n-2}+...+4+1\right)=3\cdot\left(4^{n-1}+4^{n-2}+...+4+1\right)⋮3\forall n\in N\)

Mai Anh Nguyen
Xem chi tiết
DarkNight
Xem chi tiết
longquyentieutu2005
5 tháng 8 2017 lúc 20:57

Vì \(7^{4n}-1=\left(......1\right)-1=0⋮5\)

Kaori Miyazono
5 tháng 8 2017 lúc 20:58

Ta có : \(7^{4n}-1=\left(7^4\right)^n-1=2401^n-1\)

Ta thấy 2401 tận cùng bằng 1 nên \(2401^n\)tận cùng bằng 1 nên \(2401^n-1\)tận cùng bằng 0 suy ra chia hết cho 5 nên \(7^{4n}-1\)chia hết cho 5

Vậy .......

ok  , tiện thì kb :v

Trần Nhật Tân
5 tháng 8 2017 lúc 21:00

7^4n - 1 chia hết 5

=> (....1) - 1 = (....0) chia hết 5 (đcm)

Hoàng Ngọc Tuyết Nung
Xem chi tiết
tran nguyen bao quan
3 tháng 11 2018 lúc 14:41

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

coolkid
Xem chi tiết
Phùng Minh Quân
14 tháng 12 2019 lúc 19:47

chỉ cần CM \(Q=2^{2^n}+4^n+1⋮3\) là ok 

Với n=1 thì \(Q⋮3\)

Giả sử Q vẫn chia hết cho 3 đến n=k, ta có: \(Q=2^{2^k}+4^k+1⋮3\)

Với n=k+1 thì \(Q=2^{2^k.2}+4^{k+1}+1=2^{2^k}.2^{2^k}+4^k.4+1\)

\(=\left(2^{2^k}.2^{2^k}+2^{2^k}.4^k+2^{2^k}\right)-\left(2^{2^k}.4^k+2^{2^k}-4^k.4-4\right)-3\)

\(=2^{2^k}\left(2^{2^k}+4^k+1\right)-\left(4^k+1\right)\left(2^{2^k}-4\right)-3\)

\(=2^{2^k}Q-\left(4^k+1\right)\left(4^{2^{k-1}}-1-3\right)-3⋮3\) do \(\left(4^{2^{k-1}}-1\right)⋮\left(4-1\right)=3\)

Khách vãng lai đã xóa
DarkNight
Xem chi tiết
Đặng Quang Diễn
5 tháng 8 2017 lúc 21:03

bài này dễ ợt

Trần Nhật Tân
5 tháng 8 2017 lúc 21:06

Ta có : 3^4n+1 + 2 => (....3) + 2

=> (.....5) chia hết cho 5

mình nhá ^^

ĐÀO THỊ NGỌC LAN
Xem chi tiết
Trần Nhật Tân
5 tháng 8 2017 lúc 20:08

9^2n+1 + 1 chia hết 10

9^2n x 9 + 1 chia hết 10

Tnguyeen:))
Xem chi tiết
Agatsuma Zenitsu
7 tháng 2 2020 lúc 9:58

Ta có: \(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=3.9^n-2^n.3+2^n.7\)

\(=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có: \(\hept{\begin{cases}9^n-2^n⋮9-2=7\\2^n.7⋮7\end{cases}}\)

\(\Rightarrow3\left(9^n-2^n\right)+2^n.7⋮7\)

\(\Rightarrow\left(3^{2n+1}+2^{n+2}\right)⋮7\left(đpcm\right)\)

Khách vãng lai đã xóa
shitbo
7 tháng 2 2020 lúc 10:01

\(3^{2n+1}=9^n.3\equiv2^n.3\left(\text{mod 7}\right);2^{n+2}=2^n.4\equiv2^n.\left(-3\right)\left(\text{mod 7}\right)\)

\(\Rightarrow3^{2n+1}+2^{n+2}\equiv0\left(\text{mod 7}\right)\text{ta có điều phải chứng minh}\)

Khách vãng lai đã xóa
ĐÀO THỊ NGỌC LAN
Xem chi tiết
Trần Nhật Tân
5 tháng 8 2017 lúc 20:11

n+5 chia hết n+1

=> (n+1)+4 chia hết n+1 

Mà n+1 chia hết n+1

=> 4 chia hết n+1

=> n+1 thuộc Ư(4)={1;2;4;-1;-2;-4}

=> n thuộc { 0;1;3;-2;-3;-5}

tth_new
5 tháng 8 2017 lúc 20:15

\(n+5⋮n+1\) VS: \(n\ne0\)và \(n\) là số có hai chữ số

\(\Leftrightarrow1n+5=10.n+5\) 

\(\Leftrightarrow1n+1=10.n+5\)

Tương tự ta có ĐPCM

Chuột yêu Gạo
Xem chi tiết
nguyen thi vang
18 tháng 12 2021 lúc 15:14

a, Với n = 1 ta có 3 ⋮ 3.

Giả sử n = k ≥ 1 , ta có :  k+ 2k ⋮ 3 ( GT qui nạp).

Ta đi chứng minh : n = k + 1 cũng đúng: 

(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2

                           = (k^3+2k) + 3(k^2+k+1)

Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên) 

             + 3(k^2+k+1) hiển nhiên chia hết cho 3 

Vậy mệnh đề luôn chia hết cho 3.

b, Với n = 1 ta có 12 ⋮ 6.

Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6

Ta đi chứng minh : n = k+1 cũng đúng: 

=> 13k.13 - 1 = 13(13k - 1) + 12.

Có: - 13(13k - 1) ⋮ 6 ( theo gt)

       - 12⋮6 ( hiển nhiên)

> Vậy mệnh đề luôn đúng.