Chứng minh=phương pháp quy nạp
Chứng minh \(\sqrt{n}< 1+\frac{1}{\sqrt{2}}+.......+\frac{1}{\sqrt{n}}< 2.\sqrt{n}\) \(\left(n\in N,n>1\right)\)
Chứng minh rằng: \(A=\left(2^n-1\right)\left(2^n+1\right)⋮3\forall n\in N\)
Chứng minh rằng
\(2^{2^{2n}}+5⋮7\forall n\inℕ\)
Mọi người chứng minh bằng phương pháp quy nạp toán học giùm mình nha
Chứng minh bằng phương pháp quy nạp:
Chứng minh rằng n4-n2 chia hết cho 12 với mọi số nguyên dương n
CMR:\(5^n\)\(+2\cdot3^{n-1}\)\(+1⋮8,,\forall n\inℕ^∗\)
sử dụng phương pháp quy nạp
Dùng quy nạp nha
1. CMR: ∀n thì
a) \(A=10^n+72-1\)⋮81
b) \(B=2002^n-138n-1\)⋮207
2.CMR: ∀n∈N
a) \(1.2+2.3+3.4+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{8}\)
b) \(1^3+2^3+3^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
Chứng minh rằng: \(A=\left[n^3\left(n^2-7\right)^2-36n\right]⋮7\) với \(\forall n\inℤ\)
Bài 1: Chuyên đề chia hết dùng phương pháp quy nạp:
a) \(A=3^{n+2}+4^{2n+1}⋮13\)
b) \(B=4.3^{2n+2}+32n-36⋮64\)
c) \(C=10^n+18n-28⋮27\left(n\ge1\right)\)
d) \(D=2^{2^{6n+2}}+3⋮19\left(n\ge1\right)\)
e) \(E=11^{n+2}+12^{2n+1}⋮133\left(n\ge1\right)\)
f) \(F=6^{2n+1}+5^{n+2}⋮31\left(n\ge1\right)\)
Ai đúng và nhanh 3 tick nha :3
Bài 1 :
Chứng minh rằng :
a) \(25^{n+1}-25^n⋮100\forall n\inℕ^∗\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\forall n\inℤ\)
c) \(n^3-n⋮6\forall n\inℤ\)