Cho tam giác ABC cân ở A, có 𝐴𝐵 = 10𝑐𝑚,𝐵𝐶 = 12𝑐𝑚. Tính độ dài phân giác AD của tam giác ABC.
Bài 2: Cho tam giác ABC vuông tại A. Gọi M, N lần lượt là trung điểm của AB và BC. a) Giả sử 𝐴𝐵 = 6𝑐𝑚, 𝐵𝐶 = 10𝑐𝑚, tính diện tích tam giác AMC.
\(AM=MC=5cm\)
AC=8cm
\(S=\dfrac{4\cdot3}{2}=6\left(cm^2\right)\)
Câu 1. Tính diện tích tam giác ABC trong các trường hợp sau:
a) ABC là tam giác đều có cạnh 𝐴𝐵 = 6cm.
b) ABC là tam giác vuông tại A, có 𝐴𝐵𝐶 ̂ = 30𝑜 , 𝐴𝐶 = 2𝑐𝑚.
c) ABC là tam giác cân tại A, có 𝐴𝐶 = 5𝑐𝑚, 𝐵𝐶 = 6cm.
Câu 1. Tính diện tích tam giác ABC trong các trường hợp sau:
a) ABC là tam giác đều có cạnh 𝐴𝐵 = 6cm.
b) ABC là tam giác vuông tại A, có 𝐴𝐵𝐶 ̂ = 30𝑜 , 𝐴𝐶 = 2𝑐𝑚.
c) ABC là tam giác cân tại A, có 𝐴𝐶 = 5𝑐𝑚, 𝐵𝐶 = 6cm.
a, Nửa chu vi là \(\frac{6+6+6}{2}=9cm\)
Diện tích tam giác là \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{9\left(9-6\right)\left(9-6\right)\left(9-6\right)}\)
\(=\sqrt{9.3.3.3}=9\sqrt{3}\)cm2
b, Xét tam giác ABC vuông tại A
tan^B = \(\frac{AC}{AB}\Rightarrow\frac{\sqrt{3}}{3}=\frac{2}{AB}\Rightarrow AB=\frac{6\sqrt{3}}{3}=2\sqrt{3}\)cm
Diện tích tam giác là \(\frac{1}{2}AB.AC=6\sqrt{3}\)cm2
c, Dựng AH là đường cao đồng thời là đường trung tuyến do tam giác ABC cân tại A
=> HC = BC/2 = 3 cm
Theo định lí Pytago tam giác AHC vuông tại H
\(AH=\sqrt{AC^2-HC^2}=4cm\)
Diện tích tam giác ABC là : \(\frac{1}{2}AH.BC=\frac{4.6}{2}=12cm^2\)
Giúp mk với
2) Cho hình thang cân ABCD có 𝐴̂=600 (BC//AD). Đường chéo AC là phân giác của góc A và 𝐵𝐶=5𝑐𝑚
a) Chứng minh tam giác ABC là tam giác cân
b) Chứng minh: tam giác ACD là tam giác vuông
c) Tính chu vi hình thang ABCD
Cho tam giác 𝐴𝐵𝐶 vuông tại 𝐴 với 𝐴𝐵 = 3 𝑐𝑚; 𝐴𝐶 = 4 𝑐𝑚; vẽ đường cao 𝐴𝐸. a Chứng minh ∆𝐴𝐵𝐶 đồng dạng với ∆𝐸𝐵𝐴. b Chứng minh 𝐴𝐵² = 𝐵𝐸. 𝐵𝐶. c Tia phân giác của góc 𝐴𝐵𝐶 cắt 𝐴𝐶 tại 𝐹. Tính độ dài 𝐴𝐹.
a: Xet ΔABC và ΔEBA có
góc BAC=góc BEA
góc B chung
=>ΔABC đồng dạng với ΔEBA
b: ΔABC vuông tại A có AE vuông góc BC
nên AB^2=BE*BC
c: BF là phân giác
=>AF/AB=CF/BC
=>AF/3=FC/5=4/8=1/2
=>AF=1,5cm
Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác
Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5.
a) Tính độ dài AB (câu này tớ làm đc rồi)
b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)
Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N
a) Cm: MN//AC
b) Tính MN theo a,b
Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm
a) Tính AD, DC
b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C
Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Cm: OG//AC
HD: a) AD=2,5cm b) OG//DM => OG//AC
Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N
a) CMR: MN//BC
b) Gọi giao điểm của DE và AM là O. CM: OM=ON
c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI
d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
1, Cho tam giác ABC có độ dài các cạnh AB = \(m\), AC = \(n\) ; AD là đường giác trong của góc A. Tính tỉ số diện tích của tam giác ABD và tam giác ACD.
2, Cho tam giác ABC cân ở A, phân giác trong BD, BC = 10cm, AB = 15cm.
a, Tính AD, DC.
b, Đường phân giác ngoài của góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C.
1)
Kẻ AH là đường cao của ABC
Ta có :\(S_{ABCD}=\frac{1}{2}.AH.BD ; S_{ADC}=\frac{1}{2}.AH.CD\)
\(\Rightarrow\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.BD}{\frac{1}{2}.AH.CD}=\frac{BD}{CD}\left(1\right)\)
\(\Delta ABC\)có AD là tia phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\left(2\right)\)
Từ (1)(2)
\(\Rightarrow\frac{S_{ABCD}}{S_{ACD}}=\frac{AB}{AC}=\frac{m}{n}\)
Vậy tỉ số của tam giác ABD và ACD là \(\frac{m}{n}\)
Cho tam giác ABC (AB <AC có góc B= 60 độ ). Hai phân giác AD và CE của tam giác ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. a) Tính góc AIC b) Tính độ dài cạnh AK biết PK = 6cm, AH = 4 cm. c) Chứng minh tam giác IDE cân.
nhầm lớp thì phải