Chứng miinh rằng ;32/20.23+32/23.26+...+32/77.80
chứng miinh rằng
\(^{a^2}+b^2+1>ab+a+b\)
Cho tam giác ABC vuông tại A . M là trung điểm của AC . Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và C đến BM . Chứng miinh rằng AB < BE+BF/2
định lý thường nói : nếu trong 1 tam giác có tông độ dài hai cạnh luôn luôn lớn hơn cạnh còn lại
bạn dựa vào định lý đó để chứng minh
thanks
Bài 1:
Cho tam giác ABC có BC=4cm. Gọi D,E theo thứ tự là trung điểm của AC,AB; M và N theo thứ tự là trung điểm của BE và CD, MN cắt BD ở P, cắt CE ở Q.
a) Tính độ dài đoạn MN
b) Chứng miinh rằng MP=PQ=QN
a) Ta có : \(ED=\frac{BC}{2}=\frac{4}{2}=2\left(cm\right)\)
MN là đường trung bình của hình thang BEDC nên ta có :
\(MN=\frac{ED+BC}{2}=\frac{2+4}{2}=3\left(cm\right)\)
b) \(\Delta BED\)có BM = ME(vì M là trung điểm của BE) , mà MP // ED nên BP = PD . Do đó \(MP=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)
\(\Delta\)CED có NC = ND(vì N là trung điểm của CD) , mà NQ // ED nên CQ = CE . Do đó \(NQ=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)
Lại có : PQ = MN - MP - NQ = 3 - 1 - 1 = 1(cm)
Vậy MP = NQ = PQ = 1cm
Cho hình vuông ABCD. Gọi O là giao điểm 2 đường chéo. Lấy G thuộc BC, điểm H thuộc DC sao cho góc GOH = 45*. Điểm M là trung điểm của AB. a.Chứng minh rằng tam giác HOD đồng dạng vs tam giác OGB
b. Chứng miinh MG song song AH
GIÚP MK MẤY BẠN ƠI !
cho a,b,c lad các số thực dương. chứng miinh:
bc/a^2(b+c)+ca/b^2(c+a)+ab/c^2(a+b)>=1/2a+1/2b+1/2c
Bài này ta dùng bđt Cauchy-Schwaz
VT=\(\frac{\left(bc\right)^2}{a^2bc\left(b+c\right)}\)\(+\frac{\left(\text{c}\text{a}\right)^2}{\text{b}^2c\text{a}\left(\text{c}+\text{a}\right)}\)\(+\frac{\left(\text{a}\text{b}\right)^2}{\text{c}^2\text{a}\text{b}\left(\text{a}+b\right)}\)
\(\ge\)\(\frac{\left(ab+bc+ca\right)^2}{2abc\left(ab+bc+ca\right)}\)\(=\frac{ab+bc+ca}{2abc}\)\(=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)\(=\)VP
=> đpcm
Dấu \("="\)xảy ra <=> a=b=c
Cho △ABC vuông cân tại A. chứng miinh với mọi M thuộc cạnh huyền BC ta luôn có:
MB2+MC2=2MA2
cho tam giác ABCD và 2 đường trung tuyến BD, CE cắt nhau tại G. Gọi M ,N lần lượt là trung điểm của BG, CG. Chứng miinh tứ giác MNDE có các cặp cạnh song song và bằng nhau
Đáp án:
Hình bạn tự vẽ nha!
Giải thích các bước giải:
, Xét tam giác ABC có AE=EB(gt), AD=DC(gt)
=> ED là đường trung bình của tam giác ABC
=> ED//BC và ED = 1/2BC
Xét tam giác BGC có BM=MG(gt), CN=NG(gt)
=> MN là đường trung bình của tam giác BGC
=> MN // BC và MN=1/2BC
Có MN//BC mà ED//BC => MN//ED
MN=1/2BC, ED=1/2BC=> MN=ED
Tứ giác MNDE có: MN//ED,MN=ED
=> MNDE là hình bình hành
Cho tam giác ABC ( AB = AC > BC) . Trên AB và AC lấy 2 điểm M và N sao cho BM= AN. Gọi o là điểm cách điều 3 đỉnh ABC
a) Chứng miinh góc ABO = góc CAO
b) Chứng minh: O cách đều hai điểm M và N
a.Ta có điểm O cách đều 3 đỉnh tam giac => O là giao của 3 đường trung trực
Vì tgiac ABC có AB=AC=> tgiac ABC cân tại A mà AK vuông góc với BC => AK là tia phân giác của góc BAC
=> góc BAK= góc CAK(1)
Xét tgiac AHO và tgiac BHO có:
OH chung
góc AHO= góc BHO=90
HA=HB( vì OH là đường trung trực của AB)
=> tgiac AHO=tgiac BHO(c.g.c)
=> góc HBO= góc HAO(2 góc tương ứng)(2)
Từ (1) và(2) => góc ABO= góc CAO
b.xét tgiac MOB và tgiac NAO có:
BM=AN(gt)
góc MBO= góc NAO(cmt)
OB=OA(tính chất đường trung trực)
=> tgiac MOB=tgiac NAO(c.g.c)
=> Om=ON(2 cạnh tương ứng)
chị ơi giúp em bài nì với ạ
Ở miền trong góc tù xOy, vẽ các tia Oz, Ot sao cho Oz vuông góc với Ox, Ot vuông góc với Oy
a/ Góc toz là góc gì?
b/ So sánh góc xOt và yoz
c/ Tính tổng 2 góc xoy và tOz
vẽ giúp em cái hình được ko ạ
22x44+545x3=???????
ai tick miinh tick lại cho
22 x 44 + 545 x 3
=2063
k nhà mình tk lại cho