2+3-4+5+6-7+8+9-10+...+2015+2016-2017+2018+2019-2020+2021+2022
S = 1+2-3-4+5+6-7-8+9+10+ ..... + 2018-2019-2020+2021-2022+2023
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
1+2-3-4-5+6+7-8-9-10+11+12-13-14-15+...+2011+2012-2013-2014-2015+2016+2017-2018-2019-2020 giup mik v
Lời giải:
$A=(1+2-3-4-5)+(6+7-8-9-10)+(11+12-13-14-15)+....+(2011+2012-2013-2014-2015)+(2016+2017-2018-2019-2020)$
$=(-9)+(-14)+(-19)+....+(-2019)+(-2024)$
$=-(9+14+19+...+2019+2024)$
Số số hạng: $(2024-9):5+1=404$
$A=-(2024+9).404:2=-410666$
tính
2011 + 2012 + 2013 + 2014 + 2015 + 2016 + 2017 + 2018 + 2019+ 2020 + 2021 +2022 +2023
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+ 2022+2023 =(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
2011+2012+2013+2014+2015+2016+2017+2018+2019+2020+2021+2022+2023
=(2011+2023)+(2013+2022)+...+(2016+2018)+2017 =4034+4034+4034+4034+4034+4034+2017 =4034x6+2017=26221
tính :
A= 1+2-3-4+5+6-7-8+9+...+2018-2019-2020+2021-2022
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021
A = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021
A = (-4) + ... + (-4) + 2021 +
2020 : 4 = 505
A = (-4) . 505 + 2021
A = (-2020) + 2021
A = 1
Vậy A=1
Mình gửi bạn nha !!!!!
HÃY TÌM KẾT QUẢ CỦA PHÉP TÍNH "2022+2020-2019-2018-2017+2016+2015 +2014-2013-2012-2011+...+6+5+ 4-3-2-1"
\(...=2022+2020+\left(-2019+2016-2018+2015-2017+2014\right)+...+\left(6-3+5-2+4-1\right)\)
\(=2022+2020+\left(-3-3-3\right)+\left(-3-3-3\right)+...+\left(-3-3-3\right)+\left(-3-2-1\right)\)
\(=2022+2020+\left(-9\right)+\left(-9\right)+...\left(-9\right)+\left(-6\right)\)
\(=2022+2020+\left(-9\right).\left[\left(2019-9\right):6+1\right].\left[\left(2019+6\right)\right]:2+\left(-6\right)\)
\(=2022+2020+\left(-9\right).336.2025:2+\left(-6\right)\)
\(=2022+2020-3061800-6\)
\(=-3057764\)
1-2-3+4+5-6-7+8+...+2018-2019-2020+2021+2022-2023
Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)
=0+0+...+0+(-1-2023)
=-2024
giúp mk, please :)
\(\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{2017+\dfrac{2016}{6}+\dfrac{2015}{7}+...+\dfrac{1}{2021}}\)
A. \(\dfrac{1}{2020}\)
B. \(\dfrac{1}{2021}\)
C. \(\dfrac{1}{2019}\)
D. \(\dfrac{1}{2022}\)
chọn ra 3 ngừi nhanh nhứt:>>
giải thích cho những ng ko hỉu ;-;
\(=\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{\left(\dfrac{2016}{6}+1\right)+\left(\dfrac{2015}{7}+1\right)+...+\left(\dfrac{1}{2021}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{\dfrac{2022}{6}+\dfrac{2022}{7}+...+\dfrac{2022}{2021}+\dfrac{2022}{2022}}\)
\(=\dfrac{\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}}{2022.\left(\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{2022}\right)}=\dfrac{1}{2022}\)
a) 5+3.(-7)+4:(-2)
b)1-2-3+4+5-6-7+8.....+2017-2018-2019+2020+2021
Lời giải:
a.
$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$
b.
$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$
$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$
$=0+0+....+0+2021=2021$
Tính tổng sau:
S= 1+ 2 -3- 4+ 5+ 6 -7 -8 +9 +...+2018 – 2019- 2020+ 2021+ 2022
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 + 2022
S = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021 + 2022
S = (-4) + ... + (-4) + 2021 + 2022
2020 : 4 = 505
S = (-4) . 505 + 2021 + 2022
S = (-2020) + 2021 + 2022
S = 2023
S=1+2-3-4+5+6-7-8+9+.....+2018-2019-2020+2021+2022
S=[1+2-3-4]+[5+6-7-8]+....+[2017+2018-2019-2020]+2021+2022
S=-4+[-4]+....+[-4]+4043
S=-4. 531+4043
S=-2124+4043
S= 1919
NHỚ THEO DÕI MÌNH NHA
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 + 2022
S = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021 + 2022
S = (-4) + ... + (-4) + 2021 + 2022
2020 : 4 = 505
S = (-4) . 505 + 2021 + 2022
S = (-2020) + 2021 + 2022
S = 2023 ok