Cho tam giác ABC, đường cao AH cho AB=15 cm, AC= 20 cm. Tính BC, AH, HB, HC.
Cho tam giác ABC,đường cao AH. AB = 11 cm,AC = 15 cm,BC = 20 cm
a) Cmr : HC^2 - HB^2 = AC^2 - AB^2
b) Tính BH,HC,AH
a. Xét \(\Delta AHC\)có \(AH^2+HC^2=AC^2\)(1)
Xét \(\Delta AHB\) có \(AH^2+HB^2=AB^2\)(2)
Từ (1) và (2) \(\Rightarrow HC^2-HB^2=AC^2-AB^2\left(đpcm\right)\)
b. Ta có \(HC=20-HB\Rightarrow\left(20-HB\right)^2-HB^2=AC^2-AB^2\)
\(\Rightarrow400-40HB=15^2-11^2=104\)\(\Rightarrow HB=7,4\Rightarrow HC=12,6\left(cm\right)\)
\(AH=\sqrt{AC^2-HC^2}=\sqrt{15^2-\left(12,6\right)^2}=\frac{6\sqrt{46}}{5}\left(cm\right)\)
a) Xét \(\Delta AHC\)có \(AH^2+HC^2=AC^2\)(1)
Xét\(\Delta AHB\)có \(AH^2+HB^2=AB^2\)(2)
Từ 1 và 2\(\Rightarrow HC^2-HB^2=AC^2-AB^2\left(đpcm\right)\)
b) Ta có: \(HC=20-HB\Rightarrow\left(20-HB\right)^2-HB^2=AC^2-AB^2\)
\(\Rightarrow400-40HB=15^2-11^2=104\Rightarrow HB=7,4\Rightarrow HC=12,6\left(cm\right)\)
\(AH=\sqrt{AC^2-HC^2}=\sqrt{15^2-\left(12,6\right)^2}=\frac{6\sqrt{46}}{5}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Trong các đoạn thẳng sau AB, AC, BC, AH, HB, HC hãy tính độ dài các đoạn thẳng còn lại nếu biết:
a) AB = 6 cm ; AC = 9 cm.
b) AB = 15 cm ; HB = 9 cm.
c) AC = 44 cm ; BC = 55 cm.
d) AC = 40 cm ; AH = 24 cm.
e) AH = 9,6 cm ; HC = 12,8 cm.
f) CH = 72 cm ; BH = 12,5 cm.
a: BC=căn 6^2+9^2=3*căn 13cm
AH=6*9/3*căn 13=18/căn 13(cm)
BH=AB^2/BC=12/căn 13(cm)
CH=9^2/3*căn 13=27/căn 13(cm)
b: BC=AB^2/BH=25cm
CH=25-9=16cm
AC=căn 16*25=20cm
c: AB=căn 55^2-44^2=33cm
AH=33*44/55=26,4(cm)
BH=33^2/55=19,8cm
CH=55-19,8=35,2cm
d: CH=căn 40^2-24^2=32cm
BC=AC^2/CH=50cm
AB=căn 50^2-40^2=30cm
BH=50-32=18cm
e: HB=AH^2/HC=7,2cm
BC=7,2+12,8=20cm
AB=căn 7,2*20=12(cm)
AC=căn 12,8*20=16(cm)
f: AH=căn 72*12,5=30(cm)
BC=BH+CH=84,5cm
AB=căn 12,5*84,5=32,5cm
AC=căn 84,5^2-32,5^2=78cm
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A đường cao AH phân giác AD biết BC = 5 cm DC = 20 cm Tính độ dài AB AC HB HC và diện tích tam giác AHD
DB/DC=AB/DC
DB+DC=BC
=>DB=5-20=-15 là sai đề rồi bạn
bài 2: cho tam giác ABC , đường cao AH . biết AB : AC = 3 : 4 , BC = 15 cm . tinhs HB , HC
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=15\)
\(\Leftrightarrow HC=9.6\left(cm\right)\)
hay HB=5,4(cm)
Cho tam giác ABC vuông tại A, đường cao AH, biết AH=HC=8 cm. Tính HB, AB, AC BC.
Vẽ hơi xấu , thông cảm nha !
Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) !
Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)= \(8\sqrt{2}\)
Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB )
tiếp tục tính AB 2 = BC2 - AC2 . Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !
Cho tam giác ABC vuông tại A, đường cao AH. Trong các đoạn thẳng sau AB, AC, BC, AH, HB, HC hãy tính độ dài các đoạn thẳng còn lại nếu biết:a) AB = 15 cm ; Bc = 25 cm.b) BH = 18 cm ; CH = 32 cm.c) AB = 6 cm ; BH = 3,6 cm.d) AC = 12 cm ; AH = 7,2 cm.e) AH = 7,2 cm ; AC = 9,6 cm) f) BC = 25 cm ; AH = 12 cm
f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BH+CH=25
hay BH=25-CH(2)
Thay (2) vào (1), ta được:
\(HC\left(25-HC\right)=144\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)
Cho tam giác ABC vuông tại A đường cao AH Tính độ dài AB , AC biết HB = 4,5 cm và HC = 8 cm BC = 13 cm và HB - HC = 5 cm BC = 25 cm và HP/HC = 3/2 cm
a: AB=căn 4,5*12,5=7,5cm
AC=căn 8*12,5=10cm
b: HB=(13+5)/2=9cm
HC=13-9=4cm
AB=căn 9*13=3 căn 13cm
AC=căn 4*13=2căn 13cm