Cho hình chữ nhật ABCD . Kẻ AH vuông góc với DB
a . chứng minh tam giác ADH ~ tam giác DCB
b . Gọi M là trung điểm của BH , N là trung điểm của AH . Chứng minh tam giac HMN ~ tam gic HBA
c . Chung minh MH.BD = MN.DC
d . Gọi E là trung điểm của DC . Chứng minh AM vuông góc với MẸ
Cho hình vuông ABCD. Gọi E là điểm đối xứng của A qua D.
a)Chứng minh tam giác ACE vuông cân.
b)Kẻ AH vuông góc BE tại H. Gọi M và N lần lượt là trung điểm của AH và EH. Chứng minh tứ giác BMNC là hình bình hành.
c)Chứng minh M là trực tâm của tam giác ABN.
d)Chứng minh góc ANC = 90o.
Cho hình chữ nhật ABCD. Kẻ AH⊥ BD.
a) Chứng minh: △AHD đồng dạng với △DCB. Và BC^2=DH.DB
b)Gọi M là trung điểm của BH, N là trung điểm của AH.
Chứng minh MH.BD=MN.DC
d) Gọi E là trung điểm của DC. Chứng minh MNDE là hình bình hành
e) Chứng minh: AM⊥ME
giúp mình gấp nha!!!
cho hình chữ nhật ABCD kẻ AH vuông góc với đường chéo BD
a) chứng minh tam giác AHD và tam giác DCB đồng dạng và BC^2 = với DH.DB
b) gọi S là trung điểm của BH , R là trung điểm của AH ,chứng minh SH.BD=SR.DC
C) Gọi T là trung điểm DC, chứng minh tứ giác DRST là hình bình hành
D) tính góc AST
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi M,N lần lượt là trung điểm của BH và AH
a. Chứng minh tam giác AHB ᔕ tam giác CHA
b. Chứng minh tam giác ABM ᔕ tam giác CAN
c. Chứng minh AM ┻ CN
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: BM/AN=HB/HA
mà HB/HA=AB/CA
nên BM/AN=AB/CA
Xét ΔABM và ΔCAN có
BM/AN=AB/CA
\(\widehat{ABM}=\widehat{CAN}\)
Do đó: ΔABM\(\sim\)ΔCAN
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE. a) Chứng minh AH=DE. b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông
a) Vì HD vuông góc với AB
=> HDB = HDA = 90 độ
Mà BAC = 90 độ (gt)
=> BAC = BDH = 90 độ
Mà 2 góc này ở vị trí đồng vị
=> DH //AE
=> DHEA là hình thang
Mà HE vuông góc với AC
=> HEA = 90 độ
=> HEA = BAC = 90 độ
=> DHEA là hình thang cân
=> DE = AH ( hình thang cân hai đường chéo bằng nhau)
=> dpcm
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc AB và HE vuông góc AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra:AH=DE
Bài 1 :Cho tam giác ABC nhọn, các đường cao BH,CK. Gọi D và E lần lượt là chân đường vuông góc kẻ từ B,C xuống đường thẳng HK. Chứng minh DK=EH
Bài 2 : Cho tam giác ABC vuông tại A, đường cao AH.Qua trung điểm M của cạnh AC, kẻ MN vuông góc với BC tại N. Gọi K là trung điểm AH. Chứng minh BK vuông góc với AN
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE