Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sakura
Xem chi tiết
Đỗ Đình Dũng
21 tháng 3 2016 lúc 13:02

lấy 42 số 2015 ta có 20152015...2015(có 42 số)

chia cho 41 ta được 42 số dư ,mỗi số dư nhận được 1 trong 41 số :0;1;2;3;...;40

Do đó phải có ít nhất hai số có cùng số dư khi chia cho 41.khi đó hiệu của chúng chia hết cho 41

Giả sử : 20152015...2015(m số 2015) - 20152015...2015(m số 2015)=20152015...2015(m - n số 2015).104nchia hết cho 41(m>n)

vì 104n và 41 là hai số nguyên tố cùng nhau

=>20152015...2015 chia hết cho 41

vậy tồn tại 1 số có dạng 20152015...2015 chia hết cho 41

Hải Nguyễn
Xem chi tiết
tuyên lương
Xem chi tiết
Đinh Thùy Linh
17 tháng 6 2016 lúc 15:52

Chọn 41 số dạng 20152015...2015 khác nhau.

Nếu có 1 số trong nhóm chia hết cho 41. => đpcm

Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.

Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.

Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.

Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.

Huyền Linh
29 tháng 7 2021 lúc 15:37

tui mới học lớp 6 thui mà, nguyên lý Directle là gì sao tui bt dc

Khách vãng lai đã xóa
Shizadon
Xem chi tiết
vu thuy phuong
6 tháng 2 2017 lúc 20:23

mk nè,k đi

Shizadon
20 tháng 12 2016 lúc 8:03

Ai giải hộ mik bài này đi mình K cho

Dương Trịnh Minh Lan
15 tháng 12 2017 lúc 8:58
em biết
Nguyễn Quang Trường
Xem chi tiết
VũThếHoàngSơn2004
Xem chi tiết
khánh ngân
Xem chi tiết
khánh ngân
5 tháng 12 2019 lúc 13:26

gips mk với ai làm nhanh nhất mk sẽ k

Khách vãng lai đã xóa
Đoàn Phương Linh
Xem chi tiết
Ngô Tấn Đạt
26 tháng 12 2017 lúc 10:00

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

kurama
Xem chi tiết