Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hữu Hùng
Xem chi tiết
Đoàn Đức Hà
12 tháng 7 2021 lúc 16:29

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(B=1.2+2.3+3.4+...+49.50\)

\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(=49.50.51\)

\(B=\frac{49.50.51}{3}=49.50.17\)

\(50^2.A-\frac{B}{17}=49.50-49.50=0\)

Khách vãng lai đã xóa
sarahngọc
Xem chi tiết
Nguyen Nhat Minh
22 tháng 3 2015 lúc 20:38

A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

  = 1-\(\frac{1}{50}\)

  = \(\frac{49}{50}\)

Mạnh Lê
14 tháng 3 2017 lúc 18:59

ta có công thức tính tổng quát 1/[n(n+1)] = 1/n -1/(n+1) 
=> A=1/1.2+ 1/2.3+1/3.4+1/4.5+...+1/49.50 
=1/1 -1/2 +1/2 -1/3 +1/3-1/4+.......+1/49 -1/50 
= 1 -1/50 = 49/50 

Ai thấy đúng thì tk cho mk nhé 

Nguyễn Hà Trang
14 tháng 3 2017 lúc 19:00

\(\frac{49}{50}\).

Đúng 100% luôn!

Chúc các bạn học giỏi.

Trần Văn Thực
Xem chi tiết
 Mashiro Shiina
5 tháng 6 2017 lúc 18:54

Ta có:A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)

A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)

A=1-\(\dfrac{1}{51}=\dfrac{50}{51}\)

Thục Trinh
5 tháng 6 2017 lúc 19:23

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)

\(A=\dfrac{1}{1}-\dfrac{1}{51}\)

\(A=\dfrac{50}{51}\)

thám tử
5 tháng 6 2017 lúc 19:41

A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)

= \(1-\dfrac{1}{51}\)

= \(\dfrac{50}{51}\)

Kaneki Ghoul
Xem chi tiết
Thu Thuỷ Nguyễn
Xem chi tiết
Kudo Shinichi
24 tháng 3 2017 lúc 12:00

\(A=1.\left[\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}\right]\)

\(A=1.\left[1-\frac{1}{50}\right]\)

\(A=\frac{49}{50}\)

mk làm đầu tiên đó

Đỗ Thế Hưng
24 tháng 3 2017 lúc 12:00

A=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

A=\(1-\frac{1}{50}\)

A=\(\frac{50}{50}-\frac{1}{50}\)

A=\(\frac{49}{50}\)

       Vậy A=\(\frac{49}{50}\)

LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Nhân Dương
11 tháng 9 2023 lúc 20:15

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

DSQUARED2 K9A2
11 tháng 9 2023 lúc 20:18

A = 49/50

Huỳnh Đức Duy
12 tháng 9 2023 lúc 13:51

A = 1/1.2 +1/2.3 +1/3.4 +...+1/49.50    
A = 1 +1/2 -1/2+1/3-1/3+1/4-...-1/49 +1/50    

A = 1 - 1/50   
A=49/50

 


    

 

 

 

 


 

Nguyên Ngọc Hòa
Xem chi tiết
Lê Chí Cường
19 tháng 6 2015 lúc 9:10

Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(A=1-\frac{1}{50}\)

=>\(A=\frac{49}{50}\)

Sakuraba Laura
6 tháng 3 2018 lúc 17:48

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}\)

\(\Rightarrow A=\frac{49}{50}\)

Huỳnh Bá Nhật Minh
5 tháng 6 2018 lúc 19:50

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50}{50}-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Nguyễn Thanh Vi
Xem chi tiết
Xem chi tiết
Phan Nghĩa
4 tháng 5 2019 lúc 19:14

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50-1}{50}=\frac{49}{50}\)

Nhật Hạ
4 tháng 5 2019 lúc 19:15

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\\ =1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\\ =1-\frac{1}{50}=\frac{49}{50}\)