A = 1 - 1/2 + 1/2 - 1/3 + ............. + 1/49 - 1/50
A = 1 - 1/50
A = 49/50
Chúc bạn học giỏi
Ta có: A = 1/1.2 + 1/2.3 +... + 1/49.50
A = 1 -1/2 +1/2 -1/3 +... + 1/49 -1/50
A = 1 - 1/50
A = 49/50
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{49}-\frac{1}{50}=\frac{49}{50}..\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=2-\frac{1}{1.2}+3-\frac{2}{2.3}+4-\frac{3}{3.4}+...+50-\frac{49}{49}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+\frac{4}{3.4}+...+\frac{51}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
Vậy giá trị của biểu thức \(A\) là \(\frac{49}{50}\)