Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
no name
Xem chi tiết
ngonhuminh
5 tháng 2 2017 lúc 23:28

\(\left(x^2+4z\right)^2=17\left(x^4+z^2\right)\)

\(x^4+8x^2z+16z^2=17x^4+17z^2\)

\(t^4-2t^2z+z^2=\left(t^2-z\right)^2=0\)

Nghiệm duy nhất: \(t^2=z\Rightarrow t^2=y^2+7\Rightarrow\hept{\begin{cases}t=4\Rightarrow x=2\\y=3\end{cases}}\)KL (x,y)=(2,3)

ILoveMath
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2021 lúc 10:32

6) Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y-4\right)\left(x+y+3\right)\)

7) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

8) Ta có: \(4x^4-32x^2+1\)

\(=4x^4+12x^3+2x^2-12x^3-36x^2-6x+2x^2+6x+1\)

\(=2x^2\left(2x^2+6x+1\right)-6x\left(2x^2+6x+1\right)+\left(2x^2+6x+1\right)\)

\(=\left(2x^2+6x+1\right)\left(2x^2-6x+1\right)\)

9) Ta có: \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left[x^4+2x^2+1-x^2\right]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x-1\right)^2\cdot\left(x^2+x+1\right)\)

Ly Bùi
Xem chi tiết
nguyễn kim thương
6 tháng 6 2017 lúc 9:00

1)  \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)

2)  \(x^3-9x^2+6x+16\)

\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)

\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)

3)   \(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)

\(=\left(x-5\right)\left(x^2-x-1\right)\)

4)  \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)

\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)

\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)

gửi phần này trước còn lại làm sau !!! tk mk nka !!!

Nguyễn Đức Phương
5 tháng 6 2017 lúc 21:54

nhiều thế

nguyễn kim thương
6 tháng 6 2017 lúc 9:39

6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)

\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

7)   \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)          (NHÂN x + 2 vs x +  5  và  x + 3 vs x + 4 )

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

ĐẶT   \(x^2+7x+11=y\)   ta được :  

\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)

\(=y^2-25=\left(y-5\right)\left(y+5\right)\)

8)  \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)

\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)

9) sai đề rùi bạn ơi ! đề đúng nè 

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

Ta thấy :  

\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

Thay vào biểu thức bài cho ta được : 

\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)

bài ở trên câu 3 : kết luận là  \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs  

Nguyễn thành Đạt
Xem chi tiết
Lê Song Phương
28 tháng 6 2023 lúc 6:44

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

Nguyễn thành Đạt
28 tháng 6 2023 lúc 14:24

Chị độc giải sau khi em biết làm thôi à.

Nguyễn Tiên
Xem chi tiết
╰Nguyễn Trí Nghĩa (team...
26 tháng 12 2021 lúc 22:23

\(\left|46x+49\right|=\left|19x+17\right|\)

\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{32}{27}\\x=-\frac{66}{65}\end{cases}}}\)

\(\Rightarrow\left|x_1-x_2\right|=\left|-\frac{32}{27}-\frac{66}{65}\right|=....\)

Khách vãng lai đã xóa
Ha My
Xem chi tiết
Đức Hiếu
6 tháng 6 2017 lúc 7:08

a,\(x^3-7x+6\)

\(=x^3-2x^2+2x^2-4x-3x+6\)

\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)

\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)

\(=\left(x-2\right).\left(x^2+2x-3\right)\)

\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)

\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)

\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)

\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)

b,\(x^3-9x^2+6x+16\)

\(=x^3-8x^2-x^2+8x-2x+16\)

\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)

\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)

\(=\left(x-8\right).\left(x^2-x-2\right)\)

\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)

\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)

\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)

\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)

c,\(x^3-6x^2-x+30\)

\(=x^3-5x^2-x^2+5x-6x+30\)

\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)

\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)

\(=\left(x-5\right).\left(x^2-x-6\right)\)

\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)

\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)

\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)

\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)

Chúc bạn học tốt!!!

Đức Hiếu
6 tháng 6 2017 lúc 7:26

d,\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x+3\)

\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)

\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x^2-x+3\right)\)

e, \(27x^3-27x^2+18x-4\)

\(=27x^3-9x^2-18x^2+6x+12x-4\)

\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)

\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)

\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)

Chúc bạn học tốt!!!

Đức Hiếu
6 tháng 6 2017 lúc 7:44

7, \(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)

\(=\left[\left(x+2\right).\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)

\(=\left(x^2+5x+2x+10\right).\left(x^2+4x+3x+12\right)-24\)

\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)(1)

Đặt \(t=x^2+7x+10\Rightarrow t+2=x^2+7x+12\)

\(\Rightarrow\left(1\right)=t.\left(t+2\right)-24\)

\(=t^2+2t-24=t^2-4t+6t-24\)

\(=\left(t^2-4t\right)+\left(6t-24\right)=t.\left(t-4\right)+6.\left(t-4\right)\)

\(=\left(t-4\right).\left(t+6\right)\) (2)

\(t=x^2+7x+10\) nên:

(2) \(=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right).\left(x^2+7x+16\right)\)

\(=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)

\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)

\(=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)

Chúc bạn học tốt!!!

My Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 2 2018 lúc 11:55

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (1) có hai nghiệm phân biệt khi phương trình (2) có nghiệm kép hoặc có 1 nghiệm dương và một nghiệm âm.

Phương trình (2) có một nghiệm số kép khi và chỉ khi Δ = 169 - 4m = 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phương trình (2) có một nghiệm số dương và một nghiệm số âm khi

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy với m = 169/4 hoặc m < 0 thì phương trình (1) có 2 nghiệm phân biệt.

Thanh Tâm
Xem chi tiết
Bùi Trọng Duẩn
18 tháng 1 2017 lúc 10:04

Dịt cụ mày

Thanh Tâm
18 tháng 1 2017 lúc 17:37

mày bị ngáo ak. đã xấu còn bị điên. đã bị điên cò học dốt

ngonhuminh
19 tháng 1 2017 lúc 0:07

y^2+7=z

\(\Leftrightarrow x^2+4z=17\left(x^4+z^2\right)\)Hiển nhiên \(VP\ge VT\) đẳng thức chỉ xẩy ra khi x=z=0

với z=0=> y^2+7=0 vô nghiệm

KL vô nghiệm nguyên