Trong mặt phẳng oxy, cho ba điểm biết A(1;6), B(-3;4), C(0;3)
a, Tìm điểm M∈Oy sao cho △AMB cân tại M
b, viết phương trình tổng quát của đường thẳng đi qua C và song song với đường thẳng AB
Trong mặt phẳng Oxy, cho ba điểm A, B, C với B là trung điểm của đoạn thẳng AC. Tìm tọa độ điểm C, biết A(1; 3) và B(2; -1).
\(\left\{{}\begin{matrix}x_B=\dfrac{x_A+x_C}{2}\\y_B=\dfrac{y_A+y_C}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1+x_C=4\\3+y_C=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3\\y_C=-5\end{matrix}\right.\)
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(6,3) ; B(-3;6) và C(1; -2). Xác định điểm E trên cạnh BC sao cho BE= 2EC.
A. E - 1 3 ; 2 3
B. E - 1 3 ; - 2 3
C. E 2 3 ; - 1 3
D. E - 2 3 ; 1 3
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3;-1); B(2; 10); C(-4; 2). Tính tích vô hướng A B → . A C → .
A. A B → . A C → = 40.
B. A B → . A C → = − 40.
C. A B → . A C → = 26.
D. A B → . A C → = - 26.
Ta có A B → = − 1 ; 11 , A C → = − 7 ; 3 .
Suy ra A B → . A C → = − 1 . − 7 + 11.3 = 40.
Chọn A.
Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; -1); B(2; 10); C(-4; 2). Tính tích vô hướng A B → . A C → .
A. 40
B. – 40
C. 26
D. – 26
Ta có A B → = − 1 ; 11 , A C → = − 7 ; 3 .
Suy ra A B → . A C → = − 1 . − 7 + 11.3 = 40.
Chọn A.
Trong mặt phẳng tọa độ Oxy cho ba điểm A( 2; -1) ; B( 2; 10) và C(-4; 2). Tính tích vô hướng A B → . A C →
A. 33
B. 17
C. 24
D. 33
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4); B(1;-3;1); C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)
A. l = 2 13
B. l = 2 41
C. l = 2 26
D. l = 2 11
Đáp án C
Gọi I(x;y;0) là tâm của mặt cầu (S) ⇒ A I → = x - 1 ; y - 2 ; 4 A I → = x - 1 ; y + 3 ; - 1 A I → = x - 2 ; y - 2 ; - 3
Theo bài ra, ta có
I A = I B I A = I C ⇒ x - 1 2 + y - 2 2 + 4 2 = x - 1 2 + y + 3 2 + - 1 2 x - 1 2 + y - 2 2 + 4 2 = x - 2 2 + y - 2 2 + - 3 2 ⇔ x = - 2 y = 1
Vậy I ( - 2 ; 1 ; 0 ) ⇒ A I → = ( - 3 ; - 1 ; 4 ) ⇒ l = 2 . I A = 2 16 .
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;-4), B(1;-3;1), C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy).
A. I = 2 13
B. I = 2 41
C. I= 2 26
D. I= 2 11
Chọn C
Gọi tâm mặt cầu là: I(x;y;0).
I A = I B I A = I C ⇔ ( x - 1 ) 2 + ( y - 2 ) 2 + 4 2 = ( x - 1 ) 2 + ( y + 3 ) + 1 2 ( x - 1 ) 2 + ( y - 2 ) 2 + 4 2 = ( x - 2 ) 2 + ( y - 2 ) 2 + 3 2 ⇔ ( y - 2 ) 2 + 4 2 = ( y + 3 ) 2 + 1 2 x 2 - 2 x + 1 + 16 = x 2 - 4 x + 4 + 9 ⇔ 10 y = 10 2 x = - 4 ⇔ x = - 2 y = 1 ⇒ i = 2 R = 2 ( - 3 ) 2 + ( - 1 ) 2 + 4 2 = 2 26
Cho ba điểm A(1;1;1), B(-1;-1;0), C(3;1;-1). Tìm tọa độ điểm N trên mặt phẳng (Oxy) cách đều ba điểm A, B, C.
A. N 2 ; - 4 7 ; 0
B. N(2;0;0)
C. N 2 ; 7 4 ; 0
D. N(0;0;2)
Chọn A
Điểm N(x;y;0). Tìm x;y từ hệ hai phương trình NA = NB = NC.
trong mặt phẳng oxy cho ba điểm A(2,3),B(-1,-1)C(6,6).chứng minh tam giác ABC cân
\(\overrightarrow{AB}=\left(4;-1\right)\Rightarrow AB=\sqrt{4^2+\left(-1\right)^2}=\sqrt{17}\)
\(\overrightarrow{AC}=\left(3;-5\right)\Rightarrow AC=\sqrt{3^2+\left(-5\right)^2}=\sqrt{34}\)
\(\overrightarrow{CB}=\left(1;4\right)\Rightarrow BC=\sqrt{1^2+4^2}=\sqrt{17}\)
Chu vi: \(AB+AC+BC=2\sqrt{17}+\sqrt{34}\)