Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DoTramAnh
Xem chi tiết
nguyen thuy nga
Xem chi tiết
SC__@
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Neymar JR
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 1 2018 lúc 3:36

Hệ phương trình đã cho có nghiệm duy nhất khi và chỉ khi:

Đề kiểm tra Toán 9 | Đề thi Toán 9

....
Xem chi tiết
nghia Nguyen
Xem chi tiết
Hoàng Thanh Bình
8 tháng 3 2016 lúc 9:48

m khác 1/2

Thăng Bùi Ngọc
Xem chi tiết
trang lê
Xem chi tiết
Le Xuan Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 10:55

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...