Chứng minh rằng hai số 2n+1 và 10n+7 là hai số nguyên tố cùng nhau với mọi số tự nhiên n
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 2n +12 là hai số nguyên tố cùng nhau.
chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 2n +12 là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n hai số 2n+ 3 và 4n + 8 là hai số nguyên tố cùng nhau
Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)
=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)
Có 2n+3 là số lẻ => \(2n+3⋮̸2\)
=> d = 1
=> đpcm
Chứng minh rằng với mọi n là số tự nhiên thì :
2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau .
Chứng minh rằng 2n + 1 và 6n + 5 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:
cho d là ƯCLN của chúng và d>1
ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d
suy ra:6n+5-(6n+3) chia hết cho d
vậy 2 chia hết cho d
mà các ƯC của 2 là :2 và 1
mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1
nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu
vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n thì hai số: 2n + 5 và 4n + 8 là hai số nguyên tố cùng nhau.
Gọi d=ƯCLN(2n+5;4n+8)
=>4n+10-4n-8 chia hết cho d
=>2 chia hết cho d
mà 2n+5 lẻ
nên d=1
=>ĐPCM
Chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Chứng minh rằng với mọi số tự nhiên n hai số 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.
Gọi \(d=UCLN\left(2n+3,4n+8\right)\)
Suy ra \(2n+3\)chia hết cho d và \(4n+8\)chia hết cho d
Ta có :
\(2n+3\)chia hết cho d \(=2.\left(2n+3\right)\text{⋮}d\)nên
Vì \(4n+8\text{⋮}d\)và \(4n+6\text{⋮}d\)nên
\(\left(4n+8\right)-\left(4n+6\right)\text{⋮}d=2\text{⋮}d=d..\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ nên \(d=2\)
Vậy đó