Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngocha_pham
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
Akai Haruma
2 tháng 3 2020 lúc 0:13

Lời giải:

Giả sử lớp ban đầu có $n$ dãy và mỗi dãy có $n$ người $(x,n\in\mathbb{N})$

Theo bài ra ta có:

\(\left\{\begin{matrix} nx=40\\ (x+1)(n+1)=40+15=55\\ n+1\leq 5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} nx=40\\ nx+n+x=54\\ n\leq 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} nx=40\\ n+x=14\\ n\leq 4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} n(14-n)=40\\ n\leq 4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (n-10)(n-4)=0\\ n\leq 4\end{matrix}\right.\Rightarrow n=4\)

Vậy lớp ban đầu có số dãy ghế là $x=\frac{40}{n}=\frac{40}{4}=10$ (dãy)

Khách vãng lai đã xóa
Nguyễn Quốc Trung
Xem chi tiết
Toán Casio
10 tháng 6 2017 lúc 22:39

Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x  và  x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
 308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại)  vì 250 không chia hết cho 30@x_2=25 (nhận))┤ 
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

Toán Casio
10 tháng 6 2017 lúc 22:39

Cách 1:

Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0) 
Ta có tổng cộng 250 người nên x.y =250 (1) 
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2) 
Từ (1) và (2) ta có hệ:

 

Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.

ȺßҪ•Ƙιฑǥ
5 tháng 6 2018 lúc 11:54

đáp án là

có 25 dãy ghế

mỗi dãy có 10 chỗ ngồi

hok tốt .

bii's smile
Xem chi tiết
Le Thi Khanh Huyen
14 tháng 6 2017 lúc 22:55

Coi ban đầu có n dãy ghế ( \(n\in N\)*; n < 250 , \(n\inƯ\left(250\right)\))

Ban đầu mỗi dãy có số chỗ ngồi là : \(\frac{250}{n}\) ( chỗ )

Do có 308 người dự họp, btc kê thêm 3 dãy ghế, mỗi dãy thêm một chỗ ngồi nên ta có phương trình :

\(\left(\frac{250}{n}+1\right)\left(n+3\right)=308\)

Bạn giải PT là ra n = 25 (TMĐK) và mỗi dãy ghế có 250 / 25 = 10 ( chỗ ngồi ).

Nguyễn Vũ Minh Hiếu
7 tháng 4 2019 lúc 18:58

Đáp án : 

10 chỗ ngồi 

Hok tốt

Anh Lê Vương Kim
Xem chi tiết
Nguyễn Tuấn Hưng
Xem chi tiết
nguyễn hoàng nhật vy
Xem chi tiết
thúy
Xem chi tiết
Dark Goddess
28 tháng 6 2016 lúc 9:13

undefined

nguyen duy thang
31 tháng 8 2016 lúc 20:58

ban đầu hội trương có 12 dãy ghế because:

số người đến họp dư la 52 nguoi

52 nguoi ngoi 2 day ghe va them 2 cai 

50 nguoi 2 day ghe

1 day ghe 25 nguoi

day ghe ban dau hoi truong la 300/25=12 day ghe leuleu

Kim Tuyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2023 lúc 19:09

Gọi số dãy ghế ban đầu trong phòng là x(dãy)(ĐK: x>4)

Số dãy ghế lúc sau là x+1(dãy)

Số người ngồi trên 1 dãy ghế lúc đầu là \(\dfrac{320}{x}\left(người\right)\)

Số người ngồi trên 1 dãy ghế lúc sau là \(\dfrac{420}{x+1}\left(người\right)\)

Theo đề, ta có: \(\dfrac{420}{x+1}-\dfrac{320}{x}=4\)

=>\(\dfrac{420x-320x-320}{x\left(x+1\right)}=4\)

=>4x(x+1)=100x-320

=>x(x+1)=25x-80

=>x^2+x-25x+80=0

=>x^2-24x+80=0

=>(x-4)(x-20)=0

=>\(\left[{}\begin{matrix}x=4\left(loại\right)\\x=20\left(loại\right)\end{matrix}\right.\)

Vậy: ban đầu có 20 dãy ghế