Chứng minh n^2 + 3n + 2062 \(⋮̸\) 121 với n \(\in\) Z
\(\text{CMR: }n^2+3n+5\text{ không chia hết cho 121 với mọi n }\in\text{ N}̸\)
Giải theo phương pháp chứng minh phản chứng giúp mình nhá
E mới hk lớp 8 nên chỉ thử có j thông cảm!!
Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)
=> \(4\left(n^2+3n+5\right)⋮121\)
=> \(\left(4n^2+12n+9\right)+11⋮121\)
=> \(\left(2n+3\right)^2+11⋮121\)
Vì \(4\left(n^2+3n+5\right)⋮11\) ( vì \(121⋮11\)) và \(11⋮11\)
=> \(\left(2n+3\right)^2⋮11\)
=> \(\left(2n+3\right)^2⋮121\) ( vì 11 là số nguyên tố)
=> \(\left(2n+3\right)^2+11\) không chia hết cho 121 ( vì 11 không chia hết cho 121)
hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121
=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau) ( đpcm)
Chứng minh n2 +3n+5 không chia hết cho 121 với mọi n thuộc N
đồ ngu, người ta nói chứng minh mà 5 ở đâu đây
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N . k cho mình nha bạn
Chứng minh: n^2+3n+5 ko chia het cho 121
chứng minh với mọi số nguyên n ta có số A=n2 +3n+5 không chia hết cho 121
Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N
Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.
Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121
=> (2n+3)^2+11 ko chia hết chia het cho 121
cho số nguyên n
a)cmr \(n^2+3n+5⋮11\Leftrightarrow n=11k+4\left(k\in Z\right)\)
b)cmr:\(n^2+3n+5\) không chia hết cho 121
a)\(n^2+3n+5\)
\(=\left(11k+4\right)^2+3\left(11k+4\right)+5\)
\(=121k^2+88k+16+33k+12+5\)
\(=121k^2+121k+33⋮11\)\(\Rightarrow n^2+3n+5⋮11\)
b)Có: \(n^2+3n+5\)\(=121k^2+121k+33\)\(⋮̸\)\(121\)
\(\Rightarrow n^2+3n+5⋮̸\)\(121\)
Chứng minh rằng
a) A = n(3n-1) - 3n(n-2) ⋮ 5 (∀n ϵ R)
b) B = n(n+5) - (n-3)(n+2) ⋮ 6 (∀n ∈ Z)
c) C= (n2 + 3n - 1)(n+2) - n3+2 ⋮ 5 (∀n ϵ Z)
a: A=3n^2-n-3n^2+6n=5n chia hết cho 5
b: B=n^2+5n-n^2+n+6=6n+6=6(n+1) chia hết cho 6
c: =n^3+2n^2+3n^2+6n-n-2-n^3+2
=5n^2+5n
=5(n^2+n) chia hết cho 5
Chứng minh: \(n^2+3n+5\) không chia hết cho 121
Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121
Mặt khác, n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11.
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮121
=> (2n+3)^2+11 ko chia hết cho 121
=>dpcm.
Chứng minh: \(n^2+3n+5\) không chia hết cho 121
Giả sử tồn tại số tự nhiên $n$ thỏa mãn $(n^2+3n+5) \vdots 121$
\( \Rightarrow 4\left( {{n^2} + 3n + 5} \right) \vdots 121\\ \Leftrightarrow \left( {4{n^2} + 12n + 9 + 11} \right) \vdots 121\\ \Leftrightarrow \left[ {{{\left( {2n + 3} \right)}^2} + 11} \right] \vdots 121\left( 1 \right) \)
Ta có: \(121=11.11\)
Mà $(n^2+3n+5) \vdots 11$ (vì chia hết cho $121$) \(\Rightarrow {\left( {2n + 3} \right)^2} \vdots 11\)
Mà $11$ là số nguyên tố \( \Rightarrow {\left( {2n + 3} \right)^2} \vdots 121\left( 2 \right)\)
Từ $(1)$ và $(2)$ suy ra \(11 \vdots121\) (vô lí)
Vậy điều giả sử là sai $\Rightarrow n^2+3n+5$ không chia hết cho $121 \Rightarrow$ đpcm
Chứng minh rằng : n2 +3n +5 \(⋮\) 121 với \(\forall n\in N\)
vì \(n^2+3n+5⋮121\)nên \(4n^2+12n+20⋮121\)( vì (4,121)=1)
=> \(\left(2n+3\right)^2+11⋮11\)
=> \(\left(2n+3\right)^2⋮11\)
=> \(2n+3⋮11\)
=> \(\left(2n+3\right)^2⋮121\)(vì 11 là số nguyên tố )
mà 11 không chia hết cho 121
=> \(\left(2n+3\right)^2+11⋮̸\) cho 121 (đề sai)