Cho tam giác ABC vuông góc ở A có cạnh AB = 6cm , cạnh AC = 8cm
Tính cạnh BC
cho hình tam giác abc vuông góc ở a, có cạnh ab =6cm,ac=8cm. Tính cạnh bc
yêu cầu các bạn ghi ra thứ tự lời giải rõ ràng.
Áp dụng đl Py-ta-go, ta có
BC^2=AB^2+AC^2
Mà AB^2=6^2=36,AC^2=8^2=64
=>BC^2=100=>BC=10
Cho tam giác vuông ABC vuông góc tại A. Có cạnh AB dài 6cm, cạnh AC dài 8cm. Tính độ dài cạnh BC.
Tam giác vuông ABC có hai cạnh góc vuông AB và AC lần lượt là 6cm và 8cm có cạnh BC bằng 10cm
Tính chiều cao hạ từ A xuống cạnh BC
Tam giác vuông ABC ( vuông góc ở A ) có AB = 8cm, AC = 6cm, AH = 5cm.Độ dài cạnh BC là:
Các bạn giải rõ ra nha!
Cho tam giác ABC vuông ở A , AB=6cm; AC=8cm; BC=10cm có đường cao AH cắt cạnh BC tại H, đường phân giác BD của góc ABC cắt AC tại D.
a) Tính độ dài các đoạn thẳng AD và DC .
b) Tính AH=?
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
CHo tam giác ABC vuông tại A có AB=6cm, AC=8cm. Tia phân giác của góc A cắt cạnh BC tại E
a) Tính BC, BE, CE
b) Kẻ EF song song với AB với F ∈ AC, Tính EF.
a, Theo định lí Pytago ta đc
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AE là pg nên
\(\dfrac{AB}{AC}=\dfrac{BE}{CE}\Rightarrow\dfrac{CE}{AC}=\dfrac{BE}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{CE}{AC}=\dfrac{BE}{AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow CE=\dfrac{40}{7}cm;BE=\dfrac{30}{7}cm\)
b, Vì EF // BC Theo hệ quả Ta lét \(\dfrac{EC}{BC}=\dfrac{EF}{AB}\Rightarrow EF=\dfrac{EC.AB}{BC}=\dfrac{24}{7}cm\)
Bài 7: Cho tam giác ABC vuông tại A (AB < AC). BK là tia phân giác của góc ABC, K thuộc cạnh AC. Kẻ KI vuông góc với BC tại I.
a) Tính độ dài cạnh BC biết AB = 6cm; AC = 8cm.
b) Chứng minh 2 tam giác ABK = IBK . Từ đó suy ra KA = KI.
c) Kẻ AD vuông góc với BC. Chứng minh: AI là tia phân giác của góc DAK.
d) Gọi H là giao điểm của BK và AD. Chứng minh: HB + HC < AB + AC.
Giúp mình với!
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có
BK chung
góc ABK=góc IBK
=>ΔBAK=ΔBIK
=>KA=KI
c: góc DAI+góc BIA=90 độ
góc CAI+góc BAI=90 độ
mà góc BIA=góc BAI
nên góc DAI=góc CAI
=>AI là phân giác của góc DAC
cho tam giác ABC vuông tại A biết AB=6cm AC=8cm phân giác của góc A cat cạnh BC tại D tính BD,CD ?
Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Vì AD là phân giác \(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}CD\)
Ta có: \(BD+CD=BC\Rightarrow\dfrac{3}{4}CD+CD=10\Rightarrow\dfrac{7}{4}CD=10\Rightarrow CD=\dfrac{40}{7}\)
\(\Rightarrow BD=\dfrac{3}{4}.\dfrac{40}{7}=\dfrac{30}{7}\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. a) Tính độ dài cạnh BC. b)Kẻ AH vuông góc BC. Biết AH = 4,8cm. Tính độ dài các đoạn BH, CH .