Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Phong Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 16:52

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

Taylor Kun
Xem chi tiết
ẩn danh
Xem chi tiết
Hồ Nhật Phi
27 tháng 3 2022 lúc 21:53

Bạn kiểm tra đề giúp mình! Bạn yêu cầu gì về giả thiết trên?

Sir Nghi
Xem chi tiết
bui duy phu
16 tháng 7 2023 lúc 21:28

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

mac mai trang
Xem chi tiết

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

Nguyễn Tất Nhật Nam
Xem chi tiết
bach nhac lam
23 tháng 6 2021 lúc 22:43

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)

Giải:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

Ta có:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\) 

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\) 

\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

\(=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

Mà \(\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

\(\Rightarrow2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\left(đpcm\right)\)

Minh Nhật
Xem chi tiết
Minh Nhật
2 tháng 4 2021 lúc 7:18

Trả lời dùm mình nha

trantiendat
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
12 tháng 12 2021 lúc 1:10

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

Trịnh Hải Minh
30 tháng 4 lúc 19:15

S=P nhé