Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Võ Anh Nguyên
Xem chi tiết
Akai Haruma
9 tháng 10 2017 lúc 18:21

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{8^2}{4x+3y+z}\)

\(\Leftrightarrow\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\ge\frac{64}{4x+3y+z}\)

Thiết lập tương tự với các phân thức còn lại:

\(\frac{4}{y}+\frac{3}{z}+\frac{1}{x}\ge\frac{64}{4y+3z+x}\)

\(\frac{4}{z}+\frac{3}{x}+\frac{1}{y}\ge\frac{64}{3x+y+4z}\)

Cộng theo vế: \(8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge64\left(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\right)\)

\(\Leftrightarrow\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\le\frac{1}{8}\)

Vậy GT:N của biểu thức là \(\frac{1}{8}\) khi \(x=y=z=3\)

Arima Kousei
7 tháng 2 2019 lúc 20:14

Hay :D :) . Thanks chị 

Trần Thị Ngọc Trâm
Xem chi tiết
Dong tran le
9 tháng 2 2018 lúc 16:06

\(xy+yz+xz=xyz\Rightarrow\)\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

Áp dụng BĐT Cauchy Schwarz:

\(\dfrac{1}{4x+3y+z}\le\dfrac{1}{64}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

CMTT\(\Rightarrow\) \(M\le\dfrac{1}{64}\left(\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{8}{z}\right)=\dfrac{1}{8}\)

Dấu''=" xảy ra\(\Leftrightarrow x=y=z=3\)

lê thị thủy
Xem chi tiết
ZzZ chàng trai nghịch ng...
27 tháng 2 2016 lúc 11:25

Vghgyuhvfgcvvvvvv

Phạm Thế Mạnh
27 tháng 2 2016 lúc 12:18

\(xy+xz+yz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
bây giờ ta đi chứng minh bđt phụ:
với \(a_1;a_2;...;a_8>0\)  ta có: \(a_1+a_2+...+a_8\ge8\sqrt[8]{a_1a_2...a_8}\)(Cô si) 
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge8\sqrt[8]{\frac{1}{a_1a_2...a_8}}\)
Nhân vế với vế ta đc:
\(\left(a_1+a_2+...+a_8\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\right)\ge64\)
\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_8}\ge\frac{64}{a_1+a_2+...+a_8}\)
Dấu "=" xảy ra <=> a1=a2=..=a8
a/d bđt trên ta có:
\(\frac{64}{4x+3y+z}=\frac{64}{x+x+x+x+y+y+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\)
a/d tương tự với 2 cái còn lại rồi cộng vế với vế ; thay tổng 1/x+1/y+1/z=1 là xong nhé

Eren
Xem chi tiết
Akai Haruma
1 tháng 3 2020 lúc 23:41

Lời giải:

Từ $xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{4x+3y+z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+4y+3z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\right)\)

\(\frac{1}{3x+y+4z}\leq \frac{1}{64}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z}\right)\)

Cộng theo vế 3 BĐT trên và thu gọn ta được:

$A\leq \frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}$

Vậy $A_{\max}=\frac{1}{8}$ khi $x=y=z=3$

Khách vãng lai đã xóa
Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

Minh Nguyễn Cao
Xem chi tiết
phạm minh tâm
Xem chi tiết
Thắng Nguyễn
5 tháng 2 2018 lúc 20:20

Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)

Ta chứng minh \(S=1\) là GTNN của \(S\)

Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)

\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)

\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*

BĐT cuối đúng hay ta có ĐCPM

phạm minh tâm
10 tháng 2 2018 lúc 17:52

bạn có thể trình bày theo bdt cô si hay bunhia  được không

Kiệt Nguyễn
18 tháng 4 2020 lúc 10:11

Ta có:

Tương tự ta có: \(\frac{1}{4y^2-zx+2}\ge zx;\frac{1}{4z^2-xy+2}\ge xy\)

Cộng từng vế của 3 bất đẳng thức trên. ta được:

\(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-zx+2}+\frac{1}{4z^2-xy+2}\ge xy+yz+zx=1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{\sqrt{3}}{3}\)

Khách vãng lai đã xóa
Lê Ngọc Khánh
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Tuấn
27 tháng 3 2016 lúc 21:06

tách mẫu thành 3x+3y +x+z 
mấy mauax còn lại tương tự
sau đó dúng ssww

Nguyễn Tuấn
27 tháng 3 2016 lúc 18:48

http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/

Nguyễn Văn Tiến
27 tháng 3 2016 lúc 18:52

tính giá trị lớn nhất của M = $\frac{1}{4x+3y+z} + \frac{1}{x+4y+3z} + \frac{1}{3x+y+4z}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học